回顾了语音识别技术的发展历史,描述了语音识别系统的基本原理,介绍了语音识别的几种基本方法,并对语音识别技术面临的问题和发展前景进行了讨论。
1语音识别技术概述
2语音识别的研究历史及现状
80年代语音识别研究进一步走向深入:HMM模型和人工神经网络(ANN)在语音识别中成功应用。1988年,FULEEKai等用VQ/I-IMM方法实现了997个词汇的非特定人连续语音识别系统SPHINX。这是世界上第1个高性能的非特定人、大词汇量、连续语音识别系统。
进入90年代后,语音识别技术进一步成熟,并开始向市场提供产品。许多发达国家如美国、日本、韩国以及IBM、Apple、AT&T、Microsoft等公司都为语音识别系统的实用化开发研究投以巨资。同时汉语语音识别也越来越受到重视。IBM开发的ViaVoice和Microsoft开发的中文识别引擎都具有了相当高的汉语语音识别水平。
进入21世纪,随着消费类电子产品的普及,嵌入式语音处理技术发展迅速。基于语音识别芯片的嵌入式产品也越来越多,如Sensory公司的RSC系列语音识别芯片、Infineon公司的Unispeech和Unilite语音芯片等,这些芯片在嵌入式硬件开发中得到了广泛的应用。在软件上,目前比较成功的语音识别软件有:Nuance、IBM的Viavoice和Microsoft的SAPI以及开源软件HTK,这些软件都是面向非特定人、大词汇量的连续语音识别系统。
我国语音识别研究一直紧跟国际水平,国家也很重视。国内中科院的自动化所、声学所以及清华大学等科研机构和高校都在从事语音识别领域的研究和开发。国家863智能计算机专家组为语音识别技术研究专门立项,并取得了高水平的科研成果。我国中科院自动化所研制的非特定人、连续语音听写系统和汉语语音人机对话系统,其准确率和系统响应率均可达90%以上。
3语音识别系统
语音识别本质上是一种模式识别的过程,未知语音的模式与已知语音的参考模式逐一进行比较,最佳匹配的参考模式被作为识别结果。图1是基于模式匹配原理的自动语音识别系统原理框图。
(1)预处理模块:对输入的原始语音信号进行处理,滤除掉其中的不重要的信息以及背景噪声,并进行语音信号的端点检测、语音分帧以及预加重等处理。
(2)特征提取模块:负责计算语音的声学参数,并进行特征的计算,以便提取出反映信号特征的关键特征参数用于后续处理。现在较常用的特征参数有线性预测(LPC)参数、线谱对(LSP)参数、LPCC、MFCC、ASCC、感觉加权的线性预测(PLP)参数、动态差分参数和高阶信号谱类特征等。其中,Mel频率倒谱系数(MFCC)参数因其良好的抗噪性和鲁棒性而应用广泛。
(3)训练阶段:用户输入若干次训练语音,经过预处理和特征提取后得到特征矢量参数,建立或修改训练语音的参考模式库。
(4)识别阶段:将输入的语音提取特征矢量参数后与参考模式库中的模式进行相似性度量比较,并结合一定的判别规则和专家知识(如构词规则,语法规则等)得出最终的识别结果。
4语音识别的几种基本方法
4.2矢量量化(VQ)
矢量量化是一种重要的信号压缩方法,主要适用于小词汇量、孤立词的语音识别中。其过程是:将语音信号波形的k个样点的每1帧,或有k个参数的每1参数帧,构成k维空间中的1个矢量,然后对矢量进行量化。量化时,将k维无限空间划分为M个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。
4.3隐马尔可夫模型(HMM)
隐马尔可夫模型是20世纪70年代引入语音识别理论的,它的出现使得自然语音识别系统取得了实质性的突破。目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM模型的。
HMM模型可细分为离散隐马尔可夫模型(DHMM)和连续隐马尔可夫模型(CHMM)以及半连续隐马尔可夫模型(SCHMM)等。
4.4人工神经元网络(ANN)
4.5支持向量机(SVM)
支持向量机是应用统计学习理论的一种新的学习机模型,它采用结构风险最小化原理(SRM),有效克服了传统经验风险最小化方法的缺点,在解决小样本、非线性及高维模式识别方面有许多优越的性能。其基本思想可以概括为:首先通过非线性变换将输入空间变换到一个高维空间,然后在这个新空间中求取最优线性分类面,而这种非线性变换是通过定义适当的内积函数实现的。目前,统计学习理论和支持向量机也是国际上机器学习领域的研究热点。
5语音识别所面临的问题
尽管语音识别取得很大成功,但是距离真正的人机自由交流还有很大的距离。例如,目前计算机还需要对用户做大量训练才能更准确识别,用户的语音识别率也并不是尽如人意。主要难题有以下几个方面:
(1)识别系统的适应性差。主要体现在对环境依赖性强,特别在高噪音环境下语音识别性能还不理想。
(2)语音识别系统从实验室演示系统到商品的转化过程中,还有许多具体问题需要解决。例如,识别速度、拒识等问题,还有连续语音中去除不必要语气词如“呃”、“啊”等语音的技术细节问题。
(3)语言学、生理学、心理学方面的研究成果已有不少,但如何把这些知识量化、建模并用于语音识别,还需要进一步研究。
面对上面的困难,语音识别技术要做到真正成功,在任何环境中都能人机进行自由地对话,不仅需要语音识别基础理论的突破,更需要大量的实际工作的积累。