确定体系指标之后需要确定各指标在体系结构中所发挥影响的大小,即各指标的权重。比较常见的权重确定方法有层次分析法、专家打分法、模糊分析法、最大熵技术法、主成分分析法、特征值法、灰色关联法、概率统计法等。
2.2.1层次分析法(AHP法)
层次分析法是应用最多的一种权重确定方法,该方法是美国运筹学家Pittsburgh大学教授Satie于20世纪70年代初,在为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。它将决策问题按总目标、各层子目标、评价准则直至具体的备选方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备选方案对总目标的最终权重,最终权重最大者即为最优方案。
以下用数学公式来表述具体步骤:
①构建层次结构模型
图2.2AHP法结构示意图
②构造判断矩阵
B=12111BBBii22212BBBijjjBBB21,其中Bij=jibb,表示第i个因素与第j个因素重要性
之比。重要性的确定一般采用1-9标度法进行,即对各要素重要性进行人为拟定重要程度,级别分为1-9九类程度依次递增。目标层与准则层,准责层与指标层直接都是使用这种方法构建矩阵。
③权重计算
计算相邻层级之间的层次单排序权重就是计算矩阵最大特征值与特征向量,即计算满足B·ν=λ·ν,其中λ为特征值,ν为特征向量,特征向量的每一个分量即为相对应的要素单排序权重。
④一致性检验CI=1max--nnλ,RI=1max^--nnλ(其中^
λ
max为随机从B中任取分量构成的矩阵
最大特征向量),CR=RICI
;当CR<0.1时,不一致性可接受,否则必须调整判断矩阵
2.2.2专家打分法(Delphi法)
[87]等人便是使用此种方法确定的权重。
2.2.3主成分分析法
主成分分析法是通过因子矩阵的旋转得到因子变量和原变量的关系,把多指标转化为少数几个综合指标,然后根据主成分的方差贡献率作为权重,给出一个综合评价值。可由以下部分分步完成[88]:
①建立评价分值矩阵
假设影响因子有m个,并将评价区域划分为n个评价单元,采用指数衰减或线性衰减等方法计算得到每个评价单元内各因子的评价分值,可建立n×m阶的评价分值矩阵A,即:
A=(A1,A2,Am)121
11AAAnn2
2212AAA
nmmmAAA21=(Aij)mn;②标准化将评价分值矩阵F中的每一个元素Aij进行标准化处理,即将所有因子评价
分值的均值变为0,方差变为1,则原始数据的标准化值为:
~
ijAjj
ijSAA-=,(i=1,2,……,n;j=1,2,……m)
jA、jS分别为城镇土地评价范围内所有评价单元第j个因子评价分值的平
均值和标准差。将标准化后数据.~ijA组成新的矩阵,记为n行m列标准化矩阵~A=(~
ijA)mn。
③坐标变换求特征值特征向量
+++=+++=+++=~~22~11~2~222~1212~1~212~1111lAllZmmmmmmmmm
mAlAlAlZAlAlZAAlA(1)由标准化的评价分值矩阵~
(2)求解矩阵R的特征值λ1,λ2,……,λm(从大到小排列)和对应的特值向量l1,l2,……,lm
④提取主成分
主成分的提取主要是依据主成分的累积方差贡献率。主成分的方差占总方差的比重定义为方差贡献率,即:
e
j=λ
j
/∑
=
m
i1
i
λ,(i,j=1,2,……,m)
此方差贡献率即为各个主成分的权重。
这种分析方法降低了研究的数据分析量与主观臆断程度,但仅能得到有限的主成分或因子的权重,而无法获得各个独立指标的客观权重。目前可以使用spss软件进行计算权重,也较为方便。
2.2.4最大熵技术法
最大熵计数法就是是利用信息论中信息熵来确定多指标决策问题各评价指标权重。其基本原理是:对多指标决策问题,从m个可行方案中选最优方案,取决于这m个可行方案的各个指标向决策者提供的决策信息。谁提供决策的确定信息量大,谁对决策做的贡献就大,从而该指标的权重值也就越大。
基于信息熵的客观赋权不足之处在于,赋权时仅对指标列的组间信息传递变异进行了调整,而且对于异常数据太过敏感,实际应用中有时某些非重要指标经此法计算得出的客观权重过大,导致综合权重不切实际。为了避免这一缺陷,利用熵权系数时必须给每个指标的客观权附加一个范围限制。
2.2.5其他方法
除上述所列比较常见的权重确定方法外,还有一些不太常见的方法,如:程明熙(1983)[89]提出的二项系数法,陆明生(1986)[90]提出的环比评分法,宣家骥(1989)[91]提出的最小平方法,郭亚军(2004)[92]提出的序关系分析法(G1法),黄祥志等(2006)[93]在岩土力学中使用的简单关联函数法等等。2.3评价模型构建
景观生态环境质量的综合评价首先是建立在环境单要素评价的基础上。自Horton等人(1965)提出了水质评价的“质量指数”以及Green(1966)提出的“大气污染综合指数”以来,国内外很多环境科学工作者,从不同的角度出发,用不同的方法观察和处理环境问题,提出了很多环境质量指数:如美国国家野生动物协会NWF环境质量指数、R·Brown的跨学科研究组征询法,日本的西田耕