CCFCV走进高校

特邀讲者:梁吉业博士,山西大学教授

演讲题目:表示学习研究进展与思考

9:20-10:10

特邀讲者:李玺博士,浙江大学教授

演讲题目:ContinualLearningwithDeepNeuralNetworks

10:15-10:55

特邀讲者:郑伟诗博士,中山大学教授

演讲题目:微记忆下的连续图像识别

11:00-11:30

特邀讲者:姚涵涛博士,中国科学院自动化研究所副研究员

演讲题目:面向多元异构数据的持续学习

13:30-14:10

特邀讲者:洪晓鹏博士,哈尔滨工业大学教授

演讲题目:增量学习的一些新进展

14:15-14:45

特邀讲者:霍静博士,南京大学副教授

演讲题目:面向生成式模型的持续学习技术进展与趋势

14:50-15:20

特邀讲者:杨杨博士,南京理工大学教授

演讲题目:面向开放环境的类增量学习研究

15:25-15:55

特邀讲者:李爽博士,北京理工大学副教授

演讲题目:持续迁移学习简述与进展

16:00-16:30

特邀讲者:梁国强博士,西北工业大学副教授

演讲题目:类增量学习技术研究

执行主席:

胡伏原博士,教授,中国计算机学会苏州分部副主席,苏州科技大学电子与信息工程学院院长

龚声蓉博士,教授,中国计算机学会苏州分部主席

程涵婧博士,苏州科技大学讲师

赵少川江南大学博士生

讲者/报告信息

特邀讲者:梁吉业

梁吉业,博士、教授、博士生导师,中国计算机学会(CCF)会士,中国人工智能学会(CAAI)会士,山西大学学术委员会主任,山西大学计算智能与中文信息处理教育部重点实验室主任,曾任山西大学副校长(正校级)、太原师范学院院长。现任教育部科技委人工智能与区块链专门委员会委员,教育部计算机类专业教指委委员,中国计算机学会人工智能与模式识别专委会主任,山西省计算机学会理事长,享受国务院政府特殊津贴专家。先后主持科技创新“2030—新一代人工智能”重大项目、国家自然科学基金重点项目、国家863计划项目等10余项。先后在AI、JMLR、IEEETPAMI、IEEETKDE、NeurIPS、ICML等国际国内重要学术期刊和会议发表论文300余篇。作为第一完成人获山西省自然科学一等奖3项、第五届中国国际发明展览会金奖1项、山西省教学成果特等奖2项。2014—2023年连续入选爱思唯尔中国高被引学者榜单。指导的博士生获得全国百篇优秀博士学位论文提名奖、中国计算机学会优秀博士学位论文奖、中国人工智能学会优秀博士学位论文奖。

李玺,浙江大学求是特聘教授,IETFellow,IEEESeniorMember,国家杰青,国家青年特聘专家,Elsevier2023“中国高被引学者”,主要从事人工智能领域研究,提出了多因子耦合模型学习新理论,探索了知识引导的模型结构设计与搜索新方法,开拓了复杂异构图像结构语义理解的新技术。担任国际权威期刊的编委和顶级会议的AreaChair,获得2021年中国图象图形学会自然科学奖二等奖,2021年中国电子学会科技进步一等奖,2021年中国产学研合作促进会产学研合作创新与促进奖,2022年世界互联网领先科技成果,2022年教育部高等学校科学研究优秀成果奖科学技术进步奖一等奖,2023年中国发明协会发明创业奖创新奖一等奖,2023年陆增镛CAD&CG高科技奖一等奖,两项中国北京市自然科学技术奖(包括一等奖和二等奖),以及一项中国专利优秀奖。荣获四项最佳学术论文奖、腾讯好专利、华为优秀合作成果奖和火花价值奖。成果应用于华为、阿里、海康等企业。

报告摘要:互联网和物联网时代催生了大数据,从这些海量数据中如何进行持续性特征学习已经成为当今知识经济时代亟待解决的核心技术问题。本报告主要围绕基于神经网络的continuallearning方法,进行图像/视频数据的视觉特征学习,从视觉特征表达、深度学习器构建机制、高层语义理解等多维度视角进行了深入剖析,并引入了特征学习所涉及的主要研究问题和技术方法。介绍了近年来我们利用特征学习进行视觉语义分析和理解所做的一系列代表性的研究工作及其实际应用。

郑伟诗,中山大学计算机学院教授/副院长、教育部“长江学者奖励计划”特聘教授、英国皇家学会牛顿高级学者,现任教育部机器智能与先进计算重点实验室主任。长期研究协同与交互分析理论与方法,解决人体建模和机器人行为的视觉计算问题。担任IEEET-PAMI等期刊的编委。主持承担国家级重点类项目和人才项目5项、以及广东省自然科学基金委卓越青年团队(负责人)项目等。获国家教学和省部级科技奖励6项。

报告摘要:一直以来,我们希望深度学习模型能不断地针对新问题、新类别、新数据等展开持续性学习。然而,由于灾难性遗忘问题的存在,当深度学习模型针对新任务做优化后,原有任务的分类等性能产生严重的下降。为此,近年以来,不少新颖的连续学习算法被提出。在连续学习上,我们做了些工作,主要是如何利用无标注数据解决小记忆下的连续学习建模问题和如何利用提示建模解决零记忆环境下快速适配下游任务的连续学习问题。我们将对这些近期的探索做介绍,并期望与大家一起讨论。

报告摘要:本报告针对深度神经网络在学习新任务和知识时所面临的"灾难性遗忘"问题,旨在探讨如何保留旧知识从而实现知识的增量式积累。报告将简要介绍目前主流方法,包括基于重放的遗忘抑制机制、基于提示学习的增量学习框架,以及在大模型时代出现的新趋势。

特邀讲者:杨杨

李爽,北京理工大学长聘副教授,博士生导师,在TPAMI、IJCV、TKDE、TIP等期刊和NeurIPS、ICLR、CVPR、ICCV等会议发表论文50余篇,其中CCF-A类34篇(第一/通讯作者31篇),ESI高被引3篇。荣获教育部自然科学一等奖、北京市科技新星等荣誉。作为负责人主持了国家重点研发计划课题、国家自然科学基金(面上/青年基金)、CCF腾讯犀牛鸟基金、CCF百度松果基金、阿里巴巴AIR项目等。目前的研究领域包括:领域自适应学习、动态迁移学习与多模态学习。

梁国强,西北工业大学,副教授。主要研究兴趣包括深度连续学习、面向无人机的自进化感知等。在IEEETIP、TCSVT、CVPR等领域高水平期刊和会议上发表论文近20余篇,申请专利10余项。主持了国家自然科学基金面上项目、青年项目、国家级纵向项目等多项,参与国家重点研发计划、国家自然科学基金重点项目等。

胡伏原,教授/博士,硕士生导师,国一流专业负责人。现任苏州科技大学电子与信息工程学院院长。江苏省“333高层次人才培养工程”中青年科技带头人、江苏高校“青蓝工程”教学团队负责人、中青年学术带头人,并入选江苏省“六大人才高峰”人才培养对象。现为中国体视学学会常务理事,CCF计算机视觉专委会委员,中国图象图形学会成像探测与感知专委会委员。

龚声蓉,博士,二级教授,苏州大学博士生导师,常熟理工学院计算机科学与技术学科带头人,中国计算机学会理事、杰出会员、苏州分部主席,苏州市计算机学会副理事长、苏州市人工智能学会副理事长,主要从事图像与视频分析、机器学习等研究。先后主持国家和省部级科研课题20多项,获部级科技进步奖4项,苏州市自然科学优秀学术论文一等奖1项。是江苏省高校优秀科技创新团队“智能视觉信息处理”负责人,江苏省低碳智能座舱研发与测试工程研究中心技术负责人,苏州市工业智能与大数据创新实验室主任。在IEEETransactionsonCircuitsandSystemsforVideoTechnology、IEEETransactionsonIntelligentTransportationSystems等发表论文100多篇,出版中英文学术著作各1部。

程涵婧,讲师。于2013年获南京理工大学工学学士学位,2022年获南京理工大学工学博士学位,同年加入苏州科技大学任教。近3年发表SCI论文5篇,其中包括ESI高被引论文一篇。作为主要成员参加国家自然科学基金项目5项,担任InformationFusion、Neurocomputing等多个学术期刊审稿人。

承办单位简介

苏州科技大学简介

苏州科技大学(SuzhouUniversityofScienceandTechnology),位于江苏省苏州市,是中华人民共和国住房和城乡建设部与江苏省人民政府共建高校,入选教育部卓越工程师教育培养计划、国家级大学生创新创业训练计划、国家大学生文化素质教育基地、国家级高校学生科技创业实习基地、全国首批承担援外硕士学历学位教育项目高校、江苏省博士学位授予立项建设单位,为CDIO工程教育联盟、长三角G60科创走廊高水平应用型高校协同创新联盟成员单位。

学校前身苏州科技学院于2001年9月由原苏州城市建设环境保护学院与原苏州铁道师范学院合并组建而成。原苏州城市建设环境保护学院为建设部直属院校,1983年筹建(前身苏州建筑工程学校1953年成立)。原苏州铁道师范学院为铁道部直属院校,1980年成立(前身苏州铁路中学1951年筹建)。2000年两所学校的隶属关系同时划转到江苏省,实施“中央与地方共建,以地方管理为主”的办学管理体制。2016年3月,学校更名为苏州科技大学。

THE END
1.创业过程中如何不断学习和成长摘要:本文章从创业认知与心态、团队建设、市场分析、产品开发与迭代、市场营销策略、财务管理与资金筹集、法律与合规、领导力提升、创新思维与持续学习、创业过程中的挑战与应对以及成功创业案例等多个方面,详细探讨了创业过程中如何不断学习和成长。文章旨在为创业者提供一套系统的学习和成长方法,帮助他们在创业道路上取https://blog.csdn.net/universsky2015/article/details/144320322
2.大模型「终生学习连续学习增量学习」最新综述!!!分享一篇大语言模型的终生学习|连续学习|增量学习(Lifelong Learning | Continual Learning | Incremental Learning)的最新综述!扩展自「机器之心」Arxiv专栏:整合 200 多项相关研究,大模型「终生学习」最新…https://zhuanlan.zhihu.com/p/3352669117
3.NatureMachineIntelligence三种类型的增量学习今天给大家带来一篇剑桥大学有关增量学习的文章。从非平稳的数据流中渐进地学习新信息,被称为“持续学习”,是自然智能的一个关键特征,但对深度神经网络来说是一个具有挑战性的问题。近年来,许多用于持续学习的深度学习方法被提出,但由于缺乏共同的框架,很难比较它们的性能。为了解决这个问题,我们描述了持续学习的三种https://cloud.tencent.com/developer/article/2202907
4.万文长字总结“类别增量学习”的前世今生开源工具包然而,我们的人脑却有这种非凡的能力, 能够学习大量不同的任务, 而不会出现任何负面的相互干扰。 持续学习(Continual Learning)算法试图为神经网络实现同样的能力, 并解决灾难性的遗忘问题。 因此, 从本质上讲, 持续学习执行的是对新任务的增量学习(Incremental Learning)。https://www.thepaper.cn/newsDetail_forward_17451573
5.怎么使LLama3模型具备持续学习和自我修正的能力问答要使LLama3模型具备持续学习和自我修正的能力,可以采取以下几种方法:1. 增量学习:通过不断输入新的数据和信息,让模型持续学习和更新自己的知识库,以适应不断变化的环境和需求。2. 强化学习https://www.yisu.com/ask/76731041.html
6.一文概述联邦持续学习最新研究进展(2)简介:一文概述联邦持续学习最新研究进展 3、Federated Class Incremental Learning 3.1 本地灾难性遗忘补偿 通过在分散的客户端上进行数据私有的协作训练,联邦学习吸引了越来越多的关注。然而,大多数现有的方法假设整体框架的对象类别是固定的。这使得全局模型在现实世界的场景中遭受了严重的灾难性遗忘,因为本地客户端经常https://developer.aliyun.com/article/1263653
7.学习“把党纪学习教育成果持续转化为推动高质量发展的强大动力中共中央总书记、国家主席、中央军委主席习近平近日作出重要指示强调,党纪学习教育取得积极成效,要巩固深化党纪学习教育成果,坚持融入日常、抓在经常,把党纪学习教育成果持续转化为推动高质量发展的强大动力。要善始善终抓好党纪学习教育任务落实,抓好党纪学习教育收尾工作。要常态化推进学纪知纪明纪守纪,建立经常性和集中性https://www.meipian.cn/56uymou0
8.持续学习平台,持续探索创新,逸思长天旗下全自动持续学习工具长天ML持续学习平台 逸思长天(南京)数字智能科技有限公司旗下长天ML持续学习平台,支持更高程度的自动化机器学习和持续学习能力。用户仅需提供训练数据,无需具备任何机器学习知识即可构建机器学习模型,并且随数据变化自动更新,让普通人的AI建模能力达到专家水平。加速各行各业智能化场景探索与落地。 登录SaaS版本私有化部https://www.changtianml.com/
9.我院赵丹培老师团队在IEEETPAMI连续发表多项高水平研究成果针对持续学习技术中对旧数据依赖程度高的问题,赵丹培老师团队提出无数据回放条件下的持续语义分割方法。通过研究持续学习中的灾难性遗忘和语义漂移问题的内在数学机理,针对类别增量持续语义分割任务提出了一种基于多层级知识蒸馏和非对称区域对比学习的模型增量更新方法,克服灾难性遗忘难点,能够在无数据回放的条件下实现模型的http://www.sa.buaa.edu.cn/info/1050/10631.htm
10.市场监管个人工作总结13篇搭建“政企互惠通”平台,达成银企对接合作意向44项,企业意向金额2·28亿元,银行发放贷款6千万余元。评选出十家“莲都区小微企业成长之星”。三是主体增量持续提升。全区共有各类在册市场主体41285家,新增8589家,同比增长15·3%,其中企业8009家,农民专业合作社845家,个体32431家,市场主体的总量及增量均居全市首位。https://mip.oh100.com/a/202302/6237146.html
11.好书推荐《好好学习》:拥有学习临界知识的心态,持续提升学习能力这里,推荐你不妨阅读《好好学习》这本书,此书被几位商业大咖作序,封面也赫然注明为个人知识管理精进指南,书中给出了关于学习和应用所学知识的一些原则性方法,以及大量的可实操性的案例,是一部具有很强指导和落地价值的好书。 作者成甲先生,根据自己多年的知识管理和应用实践,进行了全面思考和提炼,提出了一个贯穿始https://www.jianshu.com/p/f5d081402686
12.银行客户经理心得体会(通用15篇)持续学习,与时俱进:金融行业日新月异,新产品、新政策层出不穷。作为客户经理,我们必须保持学习的热情,紧跟时代步伐,不断提升自己的专业素养。无论是金融市场动态、政策法规变化,还是新兴金融科技的应用,都是我们需要关注和学习的内容。只有这样,我们才能为客户提供更加专业、全面的服务,赢得客户的信任和支持。 https://mip.ruiwen.com/xindetihui/2884809.html