神经网络综述(精选5篇)

人工神经网络是对人类大脑特性的一种描述。它是一个数学模型,可以用电子线路实现,也可以用计算机程序来模拟。是人工智能研究的一种方法。主要功能有:联想记忆、分类识别、优化计算、非线性映射。由于其具有好的容错性、并行处理信息、自学习性及非线性映射逼近能力等特点,因此被广泛的应用于各个领域。

1船舶与海洋工程

ANN在海洋工程中的应用主要是海洋平台的抗击性和稳定性的模拟。许亮斌等针对海洋平台桩基模拟中存在的问题,将神经网络应用于桩基分析[5]。淙在引进遗传算法的基础上构造了工程结构优化的神经网络模型,计算结果表明这一方法具有很好的稳定性和全局收敛性[6]。周亚军等将经典最优控制算法与人工神经网络相结合,采用BP神经网络模型,实现了受随机波浪力作用下的海洋平台的振动主动控制[7]。由于神经网络的优越性能,克服了传统算法本身的时滞问题,为海洋平台的振动控制提供了一条新的思路。

以上学者都对神经网络进行了一定程度的改进和完善,达到了良好的模拟和预测效果,推进了海洋工程中ANN理论的发展。除此以外,针对波浪数据的完备性对于海岸海洋工程设计的关键作用,人工神经网络作为一个具有高度非线性映射能力的计算模型,在工程中具有广泛的应用前景。在数值预测方面,它不需要预选确定样本的数学模型海洋环境监测,仅通过学习样本数据即可以进行预测论文格式范文。

2海洋预报与预测

赤潮作为海洋灾害的一种,对海洋经济造成巨大影响。蔡如钰利用人工神经网络BP算法,建立了赤潮预报模型。杨建强通过比较发现人工神经网络方法在模拟和预测方面优于传统的统计回归模型,具有较强的模拟预测能力及实用性。在此基础上,为克服BP网络训练易陷入局部最优的缺点,王晶采用遗传算法改进网络训练方法,建立赤潮生物密度与环境因子的人工神经网络的预报模型,保证网络达到全局最优。此外,还有部分学者将改进的人工神经网络模型用于赤潮预报,经过实证研究,取得良好的预测效果。

潮汐预报对人类活动和降低海洋环境建筑成本是非常重要的。为了解决潮位预测中存在的时滞问题,提高预测精度,不少学者进行了初步探索,并且普遍认为BP模型应用于潮汐预报具有较高的预测精度和良好的泛化能力,它为海洋潮汐预报工作提供了一种全新的思路和方法。张韧利用人工神经网络BP模型及其优化算法,建立起了赤道太平洋纬向风和滞后的东太平洋海温之间的映射关系和预报模型,结果表明,这种方法可有效用于辩识和反演复杂的大气、海洋动力系统及其预报模型.冯利华针对海洋预报问题,初步建立了基于神经网络的预报分析系统,给出了应用实例。以我国东南沿海地区一次登陆台风所造成的最大24小时暴雨量为例来说明ANN在海洋预报中的应用问题。罗忠辉采用人工神经网络智能方法,建立了多参数声速预报神经网络模型海洋环境监测,克服了回归拟合方法在获得海底沉积物声速预报中存在的不足,为海底沉积物的声速预报提供了一条新途径。

3海洋资源评估

张富元等利用东太平洋CC区多波束海底地形测量、结核覆盖率深拖系统探测、结核丰度地质采样和地球物理地震勘探资料,运用板块构造和沉积动力学理论,并与丰度趋势面和神经网络分析结果对比,对东太平洋CC区构造与多金属结核资源效应关系进行了探讨。李少波等讨论了如何利用神经网络预测天然气水合物的合成和分解。利用了声速、幅度、频率来反映天然气水合物的合成,建立了一个3层前向型网络,通过实验,人工神经网络的引用取得了良好的效果。近年来人工神经网络还越来越多地被用来预测水资源。在水资源应用中,前馈神经网络建模技术是使用最广泛的类型。

4海洋环境监测

非法排放油污和海上漏油事件对海洋生态系统造成的严重危害,人工神经网络可以有效的用于海水石油污染诊断。李伟认为海中悬移质是决定海洋光学性质、海洋水质,河口海岸带演变动力过程的重要环境参数。利用模拟遥感反射比数据集建立人工神经网络反演悬移质浓度,并利用东中国海现场同步数据对该算法进行验证,神经网络技术对于反演大洋水和沿岸海域中的组分浓度有一个很好的前景。刘辉等采用BP神经网络和广义回归神经网络2种方法进行训练,建立了南海南部海区的上混合层深度人工神经网络计算模型。结果显示,人工神经网络方法精度较高,是一种切实可行的上混合层深度估算方法。

5结语

参考文献

[1]刘学庆,唐晓,王佳.3C钢腐蚀速度与海水环境参数关系的人工神经网络分析[J].中国腐蚀与防护学报,2005,(1):11-14.

[2]邓春龙,孙明先,李文军等.海洋环境中材料腐蚀数据采集处理网络系统的研究[J].装备环境工程,2006,(3):58-62.

[3]王佳,孟洁,唐晓等.深海环境钢材腐蚀行为评价技术[J].中国腐蚀与防护学报.2007,(1):1-7.

[4]刘艳侠,高新琛,张国英等.BP神经网络对3C钢腐蚀性能的预测分析[J].材料科学与工程学报,2008,(1):94-97.

[5]许亮斌,陈国明.神经网络在平台桩基分析中的应用[J].中国海上油气(工程),2001,(1):7-10.

[6]淙.海洋工程结构优化的遗传Hopfield神经网络算法研究[J].中国海洋平台,2001,(5-6):58-61.

[7]周亚军,赵德有,马骏.基于人工神经网络的海洋平台振动主动控制[J].船舶力学,2003,(5):65-69.

【关键词】人工神经网络;故障诊断;模式识别;Matlab软件

一、人工神经网络综述

BP神经网络是目前应用最为广泛和成功的神经网络之一,它是由一个输入层,一个或多个隐层以及一个输出层组成,上下层之间实现全连接,而每层神经元之间没有连接。网络的学习过程包括信号正向传播和误差反向传播。在正向传播进程中,输入信息从输入层经隐层加权处理传向输出层,经功能函数运算后得到的输出值与期望值进行比较,若有误差,则误差反向传播,沿原先的连接通道返回,通过逐层修改各层的权重系数,减小误差。随着这种误差逆向传播修正的不断进行,网络对输入模式响应的正确率也不断上升。

二、人工神经网络的识别、诊断过程

确定神经网络的隐层后便可确定神经网络的最终结构,下一步就要对网络进行训练,使人工神经网络所产生的网络误差小于目标误差,对神经网络训练好以后,接下来就是对轴承的测试,神经网络测试代码为:y=sim(net,测试数据)。把正常轴承和故障轴承的测试数据导入Matlab程序中,结果整理后可得(以实验室中的一组实验数据为例):

用均值表示结果为:

把预先设定好的状态值和测试后的结果进行比较,很清楚的可以辨别出正常轴承和故障轴承。可见,对机器设备或者系统的故障诊断实质是一个模式识别过程。利用神经网络的模式识别能力,直接识别系统的当前模式,实现正常模式和故障模式之间、以及不同故障模式或不同故障程度之间的区分。

【关键词】员工安全等级;粗糙集理论;人工神经网络

1.引言

电力行业是国民经济的基础产业,它直接关系到经济发展和社会稳定。然而,电力企业员工在生产过程中,由于知识、能力与经验的不足或者心理因素等原因,为了追求某些利益,从而导致人身事故、电网事故、设备事故和火灾事故等人因事故[1]。据统计60%-70%电力生产事故是由人的失误造成的,所以减少人因失误是有效控制电力生产事故发生的关键[2-3]。

目前专门针对电力企业生产中人因失误的研究成果还不是很丰富,对电力企业生产中人的不安全行只分析了其对电力系统的影响,提出了防范不安全行为的措施,并没有对不安全行为的严重程度进行划分。另外,一些地区已经开始着手进行了员工等级的鉴定工作,但标准和方法不一致且过于简单造成了结果的不具有可比性,并且存在着评价周期长、缺乏准确性等诸多弊端。所以,需要构建统一的电力企业员工安全等级评价模型。

2.电力企业员工安全等级评价模型的设计

电力企业中现行的管理经验和方法缺乏系统性和前瞻性,管理还比较粗放,特别是员工的习惯性违章仍屡禁不止,为了从根本上提高电力企业员工的安全意识,减少人因事故的发生,本文在充分研究电企中人因失误问题的基础上,基于粗糙集与BP神经网络设计了电力企业员工安全等级评价模型,模型框架如图1所示。

评价前,首先要确定宽泛的评价属性集,然后收集数据,界定属性值语义,并对每个属性界定属性值,最后构建出属性约简决策表。构建员工属性决策表是进行员工安全等级评价的首要问题,决策表是一类特殊而重要的知识表达系统,多数决策问题都可以用决策表形式来表达。

评价中,将粗糙集作为人工神经网络的前置系统,以减少神经网络的复杂性。

3.评价核心要素的提取方法

3.2属性约简算法

粗糙集的属性约简就是指在保持原始决策表条件属性和决策属性之间的依赖关系不发生变化的前提下删除冗余的属性和属性值[5]。粗糙集的属性约简算法有很多种,本文使用的是基于区分矩阵的约简算法。算法具体如下:

(1)计算区分矩阵,将区分矩阵的核赋给约简后的集合;

(2)找出不含和指标的指标组合;

(3)将不包含和指标的指标集表示为合取范式;

(4)将合取范式转换为析取范式的形式;

(5)根据需要选择合理的指标组合。

4.BP神经网络的实现

6.结论

[1]袁周.电力生产事故人因分析与预防简明问答[M].北京:中国电力出版社,2007.

[2]马京源,李哲,何宏明,钟定珠.电气误操作事故人因因素分析与控制[J].中国电力,2010(5):72-76.

[3]林杰.安全行为科学理论在电力生产中的应用研究[D].贵州:贵州大学硕士论文,2006.

关键词:仿生算法;神经网络;遗传算法

中图分类号:TP183文献标识码:Adoi:10.3969/j.issn.1003-6970.2011.03.017

AnImprovedAlgorithmofBionicResearchandAnalysis

YueTong-sen,WangDa-hai

(XinXiangVocationalandTechnicalCollage,Xinxiang453000,Henan,China)

【Abstract】Inthispaperthebionicalgorithmofneuralnetworkandgeneticalgorithmwereanalyzedandsummarized,aimedatslowspeedofneuralnetworktraining,recognitionefficiencylow,andgeneticalgorithmtheoptimumchoiceprematureconvergenceproblem,combinedwithneuralnetworkmethodandgeneticalgorithmsoftheirrespectivecharacteristics,putsforwardtheimprovedalgorithm.Withoutthedestructionofsingleneuronsbasedoninputweights,adoptdatapretreatmentmethodstoreducethenumberofinputlayers,soastoimprovetheabilityofevolutionarylearning.

【Keywords】Bionicalgorithm;Neuralnetwork;Geneticalgorithm

0引言

1神经网络和遗传算法的特究点

1.1神经网络和遗传算法的不同点

1.神经网络是多层感知机,而遗传算法是单层感知机。神经网络是由输入层,隐含层和输出层够成,但遗传算法的基因组是一个数组,不管基因的长度有多长,其结构仍然是一个单层感知机。

2.神经网络的隐含神经元个数是不确定的,而输出层和输入层的个数是可以确定的。我们希望输入层的个数用新的方法得到降低,这样神经网络的训练速度就可以提高。同时对于隐含层的层数,一般情况设为1。每层的神经元个数也并不是越多越好,是要根据问题的情况而变动的。但神经网络的隐含层是不确定的,而且隐含层的个数也是不确定的。对于遗传算法,它的二进制的长度是可以确定的,但是交叉和变异的比例是变动的。对于单点交叉比例,我们可以设定为黄金分割点。虽然设定为黄金分割点作为单点交叉比例没有用数学方法严格的证明,但是,大量的实验表明,选择黄金分割点往往可以得到较好的结果。对于变异比例,没有交好的方法确定,只能设计交互式的实验来调试决定。

3.权值的更新方式不一样。神经网络的权值的更新方式是时时的,而遗传算法权值的更新方式是批量的。

4.两者应用的范围不一样。神经网络主要应用于模式匹配,错误诊断,监视病人的状态,特征提取,数据过滤。而遗传算法主要应用在计算机辅助设计,日程安排,经济学的投资研究等。

1.2神经网络和遗传算法的相同点

1.有教师的学习。神经网络的输出是有目标的,当然是确定的。同时对于遗传算法的目标也是确定的。所以两者都是有目标的,也就是有教师的学习。

2.随机近似优化过程。神经网络中,如果把网络的权值初始化为接近于0的值,那么在早期的梯度下降步骤中,网络将表现为一个非常平滑的函数,近似为输入的线性函数,这是因为sigmoid函数本身在权值靠近0时接近线性。同样,遗传算法的初始个体都是随机产生的,它的交叉和变异都是一个不断近似的过程。

3.并行化。神经网络的每个神经元是独立的,如果把每个神经元分配一个处理器,那么就可以采用并行的方式。同样,遗传算法很自然地适合并行实现,有粗粒度并行方法和细粒度并行方法。有粗粒度并行方法就是把群体细分成相对独立的个体群,称为类属,然后为每个类属分配一个不同的计算节点,在每个节点进行标准的GA搜索。细粒度并行方法就是给每个个体分配一个处理器,然后相邻的个体间发生重组。

2算法的研究及改进

结合人工神经网络和遗传算法的研究的本质,通过两种算法结合的研究及改进,提高算法的收敛速度,从大量的数据中模拟生物的特性来完成特定的任务和解决问题的方法和方向。由于遗传算法是单层感知机,而神经网络是多层感知机,所以可以从多层感知机的多层性,我们想象为遗传算法是单层感知机作为神经网络是多层感知机的输入层。这样,我们就可以采用遗传算法的动态变更权值的特性来对神经网络输入层有效性的遗传和变异。这种算法适合与没有输入,只有输出的应用,就像无人驾驶技术中控制行驶的速度和方向的控制一样。基本的框架如图1:

图1结合人工神经网络和遗传算法的框图

Fig.1Combinedwithartificialneuralnetworkandgeneticalgorithmdiagram

最上面的是智能体,神经网络的输出来控制智能体,控制中心将神经网络的权值用遗传算法的初始体来提供。

2.1遗传算法的基因作为神经网络的权值变量

遗传算法的基因的初始化必须要满足神经网络的输入要求,一般遗传算法的基因都是0,1编码。但是为了达到神经网络的输入要求,是要在(-1,+1)之间随机产生。

2.2遗传传算法中杂交点选择

遗传算法中,一般都是采用随机平均变异[4][5]的方式,但是如果输入是由遗传算法的基因提供的话,为了保证在变异的时候,采用标记变异的方法。我们可以首先根据图2的神经网络来考虑:

图2遗传算法作为人工神经网络和的权值图

Fig.2Geneticalgorithmasartificialneuralnetworkandtheweightsoffigure

很显然,(0.3,-0.8,-0.2)是神经元1的权值;(0.6,0.1,-0.1)是神经元2的的权值;(0.4,0.5)神经元3的权值。为了在遗传算法中的杂交过程中,不破坏每个神经元的权值个数,特意标记(3,6)所在的箭头。

2.3引入神经网络输入层的数据预处理

神经网络的计算问题是神经网络应用中最为关键的问题。如何提高网络的训练速度是算法研究的重点。我们在思考问题的时候,总是希望问题越简单越容易解决。同样,我们也可以通过对数据的预处理,来降低问题的难度。

为了减少输入层的个数,我们可以先对数据进行预处理。预处理的方法为如下流程:

(1).计算机器人前进方向Position(x,y)和目标的所在的位置Location(x,y)。

(2).归一化Position(x,y)和Location(x,y)。

(3).用点乘的计算公式计算两者点乘。

(4).用符号重载的方式计算是顺时针还是相反。

(5).计算角度=第3步的结果*第4步的结果。

3实验结果及分析

3.1实验框架

将本算法应用于扫雪机器人的智能控制中,设计的主要模块:

3.1.1神经网络部分的设计

神经网络的输入由四个变量组成:扫雪机器人方向向量(由两个变量组成,即在X和Y的分量),发现目标,即雪的向量(由两个变量组成,即在X和Y的分量)。神经网络的隐含层由一层组成,而且由10个神经元。神经网络的输出由两个变量组成,V1和V2,分别作用在机器人的左轮和右轮上。神经网络的响应函数采用SIGMOD。

3.1.2遗传算法部分的设计

遗传算法的初始化是为神经网络提供权值,所以是由[-1,1]随机数产生。遗传算法的变异是采用随机变量的变异,选择采用轮转法。

3.1.3扫雪机器人

扫雪机器人用神经网络来控制,当找到目标后,它的适值就加一。这样就随着发现目标越多,它的适值就越大。学习能力是通过不断的学习后,它的适值就会加强。如果直接采用机器人前进方向和目标的所在的位置,那么神经网络的输入为四个变量。

3.2结果与分析

如果直接采用机器人前进方向和目标的所在的位置,那么神经网络的输入为四个变量。通过对扫雪机器人的学习过程,没有进行预处理的数据,即四个变量输入神经网络后的参数设定:神经网络的输入为4,神经元为6个,输出个数为2个,如图3所示:

图3网络的参数设定图

Fig.3Networkparameterssetfigure

我们设定初始的适值为0,如果发现一个目标后,它所对应的适值就加上1,这样经过50次的进化后,没有进行数据预处理的最大值是25,平均值是10.1333。如表1所示:

将50次的统计结果用柱状图进行对比,如图4所示。

图4进化50代后的加入数据预处理和没有加入预处理的对比图

Fig.4After50generationdatapreprocessinganddidnotjoinjoinedthepretreatmentofcontrastdiagram

为了减少输入层的个数,我们可以先对数据进行预处理下面,用统计的方法对数据进行的结果分析,如表2所示。

将进化100代后,对比两者的对比柱状图如图5所示。

图5进化50代后的加入数据预处理和没有加入预处理的对比图

Fig.5After50generationdatapreprocessinganddidnotjoinjoinedthepretreatmentofcontrastdiagram

实验结果表明,为了减少输入层的个数,先对数据进行预处理。通过对扫雪机器人的过程的数据分析进行分析,数据预处理后的智能进化学习能力相对于原始数据的智能进化学习能力有明显的提高。

4结束语

本文提出了基于神经网络和遗传算法结合的改进算法,对于遗传算法的变异操作进行改进,不会破坏单个神经元的输入权值的基础上,采用数据预处理的方法来减少输入层的个数,从而提高进化学习的能力。从实验数据中可以看到,本章提出的改进算法加快了学习速度,达到了提高智能学习的预期

目的。

[1]乔俊飞,韩桂红.神经网络结构动态优化设计的分析与展望[J].控制理论与应用,2010,3(13):350-357.

[2]葛继科,邱玉辉,吴春明,等.遗传算法研究综述[J].计算机应用研究,2008,10(9):2911-2916.

[3]丁建立,陈增强,袁著祉.智能仿生算法及其网络优化中的应用研究进展[J].计算机工程与应用,2003,12(3):10-15

[4]巩敦卫,等.交互式遗传算法原来及其应用[M].北京:国防工业出版社,2007.

[关键词]BP神经网络农业工程农业管理农业决策

一、引言

采用神经网络算法的信息处理技术,以其较强的计算性和学习性,现如今已经在各工程领域内得到了广泛应用。随着科技不断的发展和研究的不断深入,农业系统中采用的传统分析和管理的方法已经不能满足农业工程领域快速发展的需要。在农业系统中采用神经网络技术可在一定程度上可弥补传统方法的不足,现已成为实现农业现代化的一个重要途径。神经网络现已在农业生产的各个环节得到广泛的应用,从作物营养控制、作物疾病诊断、产量预测到产品分级,显示了巨大的潜力,并正以很快的速度与生产实际相结合。目前应用比较多的BP神经网络,可通过学习以任意精度逼近任何连续映射,在农业生产与科研中展示出了广阔的应用前景。

BP人工神经网络方法。人工神经网络是对生物神经网络的简化和模拟的一种信息处理系统,具有很强的信息存贮能力和计算能力,属于一种非经典的数值算法。通常可分为前向神经网络、反馈神经网络和自组织映射神经网络。BP神经网络(BackpropugationNeura1Network)是一种单向传播的多层前向神经网络,可通过连续不断的在相对于误差函数斜率下降的方向上计算网络权值以及偏差的变化而逐渐逼近目标值,每一次数字和偏差的变化都与网络误差的影响成正比,并以反向传播的方式传递到每一层,从而实现了神经网络的学习过程。BP人工神经网络的结构如图所示,BP神经网络可分为输入层、中间层(隐含层)和输出层,其中输入和输出都只有一层,中间层可有一层或多层。同层的网络结点之间没有连接。每个网络结点表示一个神经元,其传递函数通常采用Sigmoid型函数。BP神经网络相当于从输入到输出的高度非线性映射,对于样本输入和输出,可以认为存在某一映射函数g,使得y0=g(xi),i=1,2,3,…,m,其中m为样本数,xi为输入样本,yo为输出结果。

BP神经网络的一个显著优点就是其可进行自学习,能够通过训练得到预期的效果。其学习过程由正向传播和反向传播组成,神经网络的输入值经过非线性变换从输入层经隐含层神经元的逐层处理传向输出层,此为正向传播过程。每一层神经元的状态将影响到下一层神经元状态。如果输出层得到的数值与期望输出有一定的偏差,则转入反向传播过程。神经网络通过对输入值和希望的输出值(教师值)进行比较,根据两者之间的差的函数来调整神经网络的各层的连接权值和各个神经元的阈值,最终使误差函数达到最小。其调整的过程是由后向前进行的,称为误差反向传播BP算法。具体学习过程如下:

(1)随机给各个权值赋一个初始权值,要求各个权值互不相等,且均为较小的非零数。

(2)输入样本集中每一个样本值,确定相应的网络实际输出值。

(3)计算实际的输出值与相应的样本集中的相应输出值的差值。

(4)按极小误差方式调整权值矩阵。

(5)判断网络误差是否小于训练前人为设定的一个较小的值,若小于,则跳出运算,此时的结果为神经网络的最终训练结果;若大于,则继续计算。

(6)判断最大迭代次数是否大于预先设定的数,若小于,返回(2);若大于,则中止运算,其结果为神经网络的最终训练结果。

上述的计算过程循环进行,直到完成给定的训练次数或达到设定的误差终止值。

二、BP神经网络在农业工程领域中的应用

1.在农业生产管理与农业决策中的应用

农业生产管理受地域、环境、季节等影响较大,用产生式规则完整描述实际系统,可能会因组合规则过多而无法实现。神经网络的一个显著的优点就是其具有较强的自学习、自适应、自组织能力,通过对有代表性的样本的学习可以掌握学习对象的内在规律,从而可以在一定程度上克服上述信息量大的问题。神经网络在农业生产管理方面可用于农作物生长过程中对农作物生长需求进行预测,从而通过对养分、水分、温度、以及PH值的优化控制达到最优的生长状况。采用神经网络预测算法的主要思想可描述为:(1)收集一定规模的样本集,采用BP算法进行训练,使网络收敛到预定的精度;(2)将网络权值矩阵保存到一存储介质中,例如文本文件或数据库中;(3)对于待预测数据的输入部分,从存储介质中读出网络连接权值矩阵,然后通过BP神经网络的前向传播算法计算网络输出,输出结果既是预测出来的数值向量。如霍再林等针对油葵不同阶段的相对土壤含盐浓度对其产量的影响有一定的规律的现象,以油葵的6个成长阶段的土壤溶液含盐的相对浓度为输入样本,相对产量为输出样本,通过比较发现,训练后的神经网络能较好预测油葵产量,采用此方法可补充传统模型的不足,为今后进一步的研究开辟了新路。

2.在农产品外观分析和品质评判

农产品的外观,如形状、大小、色泽等在生产过程中是不断变化的,并且受人为和自然等复杂因素的影响较大。农产品的外观直接影响到农产品的销售,研究出农作物外观受人为和自然的影响因素,通过神经网络进行生产预测,可解决农产品由于不良外观而造成的损失。如Murase等针对西红柿表皮破裂的现象,西红柿表皮应力的增长与西红柿果肉靠近表皮部分水分的增加有关,当表皮应力超过最大表皮强度时,将导致表皮破裂。用人工神经网络系统,预测在环境温度下的表皮应力,可通过控制环境变量来减少西红柿表皮破裂所造成的损失。

在农业科研和生产中,农产品的品质评判大多是依赖于对农产品外观的辨识。例如对果形尺寸和颜色等外观判别果实的成熟度,作物与杂草的辨别,种子的外观质量检测。由于农业环境的复杂性和生物的多样性,农产品的外观不具有较确定的规律性和可描述性,单一采用图像处理技术辨识农产品的外观时不宜过多采取失真处理和变换,否则则增加图像处理的复杂性,特征判别也相对困难。人工神经网络由于其具有自学习、自组织的能力,比较适宜解决农业领域中许多难以用常规数学方法表达的复杂问题,与图像处理技术相结合后,可根据图像特征进行选择性判别。采用此方法可以部分替代人工识别的工作,提高了生产效率,也有利于实现农业现代化。如Liao等将玉米籽粒图像用34个特征参数作为神经网络的输入变量,将输出的种粒形态分为5类,经过学习的神经网络对完整籽粒分类的准确率达到93%,破籽粒分类的准确率达91%。

3.蔬菜、果实、谷物等农产品的分级和鉴定

在农业生产中,蔬菜、果实、谷物等农产品的分级和鉴定是通过对农产品外观的辨识进行的。传统的农产品外观的辨识方法费时费力、预测可靠度很低,而且多采用人工操作,评价受到操作者主观因素的影响,评判的精度难以保证。利用人工神经网络技术结合图像处理技术可部分代替以往这些主要依靠人工识别的工作,从而大大提高生产效率,实现农业生产与管理的自动化和智能化。

利用BP神经网络技术对农产品果形尺寸和颜色等外观评判,目前国内外已有不少成果用于实际生产中。何东健等以计算机视觉技术进行果实颜色自动分级为目的,研究了用人工神经网络进行颜色分级的方法。分别用120个着色不同的红星和红富士苹果作为训练样本集对网络进行离线训练。两个品种的苹果先由人工依据标准按着色度分成4级,对每一个品种分别求出7个模式特征值作为BP网络的输入,用训练好的神经网络进行分级。结果表明红富士和红星果实的平均分级一致率分别为94.2%和94.4%。刘禾等用对称特征、长宽特征、宽度特征、比值特征等一系列特征值来描述果形。采用BP网络与人工智能相结合,建立果形判别人工神经网络专家系统。试验水果品种为富士和国光。试验表明系统对富士学习率为80%,对非学习样本的富士苹果的果形判别推确率为75%,系统对国光学习率为89%,对非学习样本的国光苹果果形判别系统的难确率为82%。

三、未来的发展方向

人工神经网络的信息处理技术现已在农业工程领域内得到了迅速的应用,采用人工神经网络算法的农业系统能够从一定程度上改善控制效果,但此技术在农业范围内还不够成熟,有待于进一步的研究。今后科研的方向大体上可以从以下几方面着手:

1.人工神经网络算法的改进

2.应用领域的扩展

人工神经网络算法在农业工程方面现已得到了迅速的发展,扩展其在农业工程领域的应用范围是未来的一个主要研究方向。人工神经网络由于其具有自学习能力,可对农业系统的非线形特性进行较好的描述,采用人工神经网络可解决传统方法的不足,从而实现农业现代化。如何将神经网络较好地引入到农业系统,解决农业工程中的部分问题,已是今后农业科研中的一个方向。

四、结束语

神经网络作为一种人工智能范畴的计算方法,具有良好的自学习与数学计算的能力,可通过计算机程序进行模拟运算,现已广泛用于模式识别、管理决策等方面。随着计算机硬件和软件的不断发展与农业工程方面的研究的不断深入,神经网络将在农业管理、农业决策、农作物外观分类、品质评判等方面充分发挥其自学习能力强,计算能力强的优势,通过对样本数据的学习,神经网络可较好地解决农作物生长过程中的作物分类、预测等非线形的问题。在农业工程领域内,神经网络拥有广阔的科研前景。

参考文献:

[1]余英林李海洲:神经网络与信号分析[M].广州:华南理工大学出版社,1996:45

[2]霍再林史海滨孔东等:基于人工神经网络的作物水―盐响应初步研究[J].内蒙古农业大学学报,2003,24(3):66~70

[3]何勇宋海燕:基于神经网络的作物营养诊断专家系统[J].农业工程学报,2005,21(1):110~113

[4]马成林吴才聪张书慧等:基与数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2006,20(2):152~155

[5]刘铖杨盘洪:莜麦播种方式决策的BP神经网络模型[J].太原理工大学学报,2006,37(5):119~121

[6]谭宗琨:BP人工神经网络在玉米智能农业专家系统中的应用[J].农业网络信息,2004(10):9~1

[7]LiaoK,LiZ,ReidJF,etal.Knoledge-basedcolordiscriminationofcornkernels[J].ASAEpaper[C].92~3579

THE END
1.人工智能深入了解神经网络 通过Frank La La|2019 年 2 月 神经网络是很多高级的人工智能 (AI) 解决方案的基本元素。但是,很少人取消 derstand 这一概念的核心数学或结构化基础。虽然初始研究神经网络返回日期数十年来,它不是直到最近的计算能力和训练数据集的大小进行它们实际供常规使用。 https://docs.microsoft.com/zh-cn/archive/msdn-magazine/2019/february/artificially-intelligent-a-closer-look-at-neural-networks
2.线性神经网络与统计线性模型的融合摘要:本文聚焦于线性神经网络与统计线性模型的融合,深入探讨其原理、方法及应用意义。首先分别阐述线性神经网络和统计线性模型的基本架构与特性,包括线性神经网络的神经元结构、前向传播与反向传播算法,以及统计线性模型如线性回归、逻辑回归等的数学表达式和假设条件。详细分析融合的动机,如结合两者优势以提高模型的预测准确https://blog.csdn.net/ashyyyy/article/details/144364459
3.混合神经网络混合神经网络的意思混合神经网络 混合神经网络的意思 可以把神经网络看作复合函数。你输入一些数据,它会输出一些数据。适用于有大量数据,能容忍一定误差,不能用一些规则简单归纳的问题。 拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、https://blog.51cto.com/u_16099211/7613933
4.《混合神经网络技术(第二版)》(田雨波)简介书评混合神经网络技术(第二版)客服无忧-金牌电商客服实战Excel在会计与财务管理工作中的案例应用非线性随机时滞神经网络-稳定性分析与脉冲镇定Excel篇-实战大数据分析 科学出版社自营店当当自营 进入店铺收藏店铺 商品详情 开本:16开 纸张:胶版纸 包装:平装胶订 http://product.dangdang.com/23807282.html
5.混合神经网络混合神经网络这一术语可以有两种含义。生物神经网络与人工神经元模型相互作用,以及带有符号部分的人工神经网络(或者反过来说,带有连接主义部分的符号计算)。至于第一种含义,混合网络中的人工神经元和突触可以是数字或模拟的。对于数字变体,电压钳被用来监测神经元的膜电位,计算模拟人工神经元和突触,并通过诱导突触刺激生物https://vibaike.com/176423/
6.MLP/CNN混合神经网络学术百科与"MLP/CNN混合神经网络"相关的文献前1条更多文献>> 1.基于混沌神经元的延时滥用入侵检测模型 在研究混沌神经元延时特性的基础上 ,构建了MLP/CNN混合前馈型神经网络 .提出基于混沌神经元的滥用入侵检测模型 ,它既具备MLP的分类功能 ,又具有混沌神经元的延时、收集和思维 详情>> https://wiki.cnki.com.cn/HotWord/2663679.htm
7.神经网络原理通用12篇4.3.2 用光学或光电混合器件实现神经网络硬件系统 光学技术在许多方面有着电子技术无法比拟的优点:光具有并行性,这点与神经计算机吻合;光波的传播交叉无失真,传播容量大;可实现超高速运算。现在的神经计算机充其量也只有数百个神经,因此用“电子式”还是可能的,但是若要把一万个神经结合在一起,那么就需要一亿条导线,https://sszn.xueshu.com/haowen/92731.html
8.JC文献分享混合效应神经网络模型混合效应神经网络模型(mixed effect neutral network,MENN),即将非线性函数放入到混合效应模型中,可以使用下面函数进行表示。 (4)MENN参数估计 传统的神经网络一般使用最小二乘法或极大似然法进行参数估计,MENN更多使用极大似然法进行参数估计,估计公式如下图所示。 03.研究结局 3.1 选择神经元数量 神经网络参数包括三https://www.360doc.cn/article/53859747_1032035185.html
9.分层混合专家神经网络HME,HME(HierarchicalMixturesofExpert6) hierarchical hybrid neural networks(HHNN) 分级混合神经网络补充资料:Hopfield神经网络模型 Hopfield神经网络模型 Hopfield neural network model 收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络http://www.dictall.com/indu/184/183040961C1.htm
10.清华创新架构芯片量产!全球首款可重构超低功耗语音AI芯片这三款芯片的设计方案一问世,就收获了国际学术界的认可。比如Thinker-I首次出现在2017VLSI国际研讨会上时,外界评价它“突破了神经网络计算和访存瓶颈,实现了高能效多模态混合神经网络计算。” 而清微智能CEO王博的本科和硕士均在北京邮电大学计算机通信专业就读,他与清华大学Thinker团队的相识,却来自一段同学缘分。 https://zhidx.com/p/150991.html
11.基于神经网络模型参考自适应实现混合动力汽车电子差速控制系统的设计本文所设计的混合动力汽车采用轮毂驱动技术,根据轮毂驱动电动汽车的技术特点,提出一种基于神经网络模型参考自适应的控制方法.实现混合动力驱动汽车的电子差速控制。 2 现有的电子差速技术 当汽车低速运行时,由ACKERMANN和JEANTAND提出的模型广泛应用于汽车的电子差速控制。如图1所示。 https://www.elecfans.com/d/1558302.html
12.《基于神经网络的混合非线性电阻率反演成像》(江沸菠,戴前伟,冯德京东JD.COM图书频道为您提供《基于神经网络的混合非线性电阻率反演成像》在线选购,本书作者:,出版社:中南大学出版社。买图书,到京东。网购图书,享受最低优惠折扣!https://item.jd.com/11884775.html
13.基于混合多级深度神经网络系统的半导体制造过程自动化视觉故障本文引入了一种新颖的混合多级叠加深度神经网络系统(SH-DNN)混合多级系统,该系统允许通过经典的计算机视觉管道在像素大小内定位最精细的结构,而分类过程由深度神经网络实现。所提系统将重点从其结构的详细程度转移到与任务相关的更感兴趣的领域。正如创建的测试环境所示,基于 SH-DNN 的多级系统超越了当前基于学习的自动https://www.niuren.com/News/Details/73.html
14.量子深度学习:快速了解量子卷积神经网络关于量子卷积神经网络(QCNNs)你需要知道的一切,包括这些方法相较于经典计算方法的优势和局限性 芬兰埃斯波的IQM量子计算机 by Ragsxl 近几年来,量子计算的投资显著增加https://www.imooc.com/article/361385
15.《神经网络与深度学习》混合式教学案例库《神经网络与深度学习》混合式教学案例库包括“基础理论案例”、“专题技术案例”、“综合应用案例”三类案例,每个案例提供案例简介、原理与方法、程序说明及源码解析、程序运行指南、参考文献等文档,和完整的源代码和数据。 使用案例库展开教学,有利于将理论与实践应用相结合,引导学生从主动获取专业知识、发现问题、分析https://jsjxy.xust.edu.cn/info/1069/3713.htm
16.学习报告:数据集特征对使用混合深层神经网络的起重机操作员疲劳该论文提出了一种混合深度神经网络架构,以探索和分析哪些数据集的特征和相应的数据采集方法适合起重机操作员的疲劳检测。它是结合CNN和LSTM进行疲劳检测而设计的。首先,采用这种混合深度神经网络架构对重新标记的三个数据集进行训练:NTHU-DDD、UTA-RLDD和YawDD。然后,使用训练后的模型评估起重机操作员在模拟起重机操作过https://www.scholat.com/teamwork/showPostMessage.html?id=10862
17.片上集成光学神经网络综述(特邀)中国激光[73]Zhang L H, Li C Y, He J Y, et al. Optical machine learning using time-lens deep neural networks[J]. Photonics, 2021, 8(3): 78. [74]陈宏伟, 于振明, 张天, 等. 光子神经网络发展与挑战[J]. 中国激光, 2020, 47(5): 0500004. https://www.opticsjournal.net/Articles/OJdcf7e12569999709/FullText
18.神经网络与深度学习卷积神经网络最初被独特设计并且应用于图像的分类和识别。它采用了三个基本概念:局部感受野(local receptive fields),共享权重(shared weights),和混合(pooling)。卷积神经网络结合了传统图像处理中的思路,这种结构更适合表现图像的整体特点和特征的提取,除了图像,这个模型也被广泛应用于其他应用场景。 https://www.jianshu.com/p/972843df274a
19.Science最新:用机器学习建模人类的风险认知澎湃号·湃客图8中神经网络学到的混合模型中对应的效用函数和主观概率。值得注意的是,一个策略中习得效用函数显然是损失厌恶的,而对应的主观概率则如同前景理论预测的,对小概率的时间高估,而低估了大概率时的确定性,而另一个策略则是基本理性的。通过找出在什么场景下,人们会选择理性的策略:什么时候人们会如前景理论预测的,什么https://www.thepaper.cn/newsDetail_forward_13264651
20.图9神经网络学习算法的实时性; (4)?神经网络控制器和辨识器的模型和结构; 根据神经网络在控制器中的作用不同,神经网络控制器可分为两类,一类为神经控制,它是以神经网络为基础而形成的独立智能控制系统;另一类为混合神经网络控制,它是指利用神经网络学习和优化能力来改善传统控制的智能控制方法,如自适应神经网络控制等https://max.book118.com/html/2016/0629/46804310.shtm