arXiv2015深度学习年度十大论文菜鸡一枚

由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方。这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内。它反映了学术界当前的整体趋势,我们看到,近来发布的机器学习研究有许多都与深度学习有关。

HuhoLarochelle博士是加拿大舍布鲁克大学(UniversitédeSherbrooke)机器学习教授,Twitter的研究员,有名的神经网络研究者,以及深度学习狂热爱好者。从2015年夏天开始,他就一直在撰写并发布他对于arXiv上他感兴趣的机器学习论文所做的笔记。

以下是HuhoLarochelle评选出的arXiv深度学习年度十佳论文。

1、无穷维度的词向量

InfiniteDimensionalWordEmbeddings

EricNalisnick,SachinRavi

2015/11/17

摘要:

我们描述了一种用随机维度(stochasticdimensionality)学习词向量的方法。对于给定的某个词向量、它的语境向量(contextvector)、以及它们的维度,我们的无穷Skip-Gram模型(iSG)给出了一种基于能量的联合分布(energy-basedjointdistribution)。通过运用追踪无穷受限玻尔兹曼机(InfiniteRestrictedBoltzmannMachine)变化的技术,我们定义了可数无穷范围内的词向量维度,使得向量在训练中可以根据需要增加。

Hugo的点评:

这是对于我们在iRBM中引入的“无穷维度(infinitedimensionality)”的一种相当有创意的用法。这并不完全是一个“即插即用(plugandplay)”的方法,所以作者们需要聪明地估算所需的iSG的训练量。

定性结果显示出了维度数量的条件如何隐含了多义性信息,非常简单利落!分布式词向量背后的假定之一就是它们应该能够表征出一个词的多种含义,所以看到这一点得到验证是一件让人愉快的事。

我觉得这篇论文唯一缺少的东西就是与传统skip-gram(可能还有其他词向量方法)在某个特定任务或是词语相似性任务中进行比较。论文的第二个版本中,作者们的确提到了他们正在做这件事,所以我非常期待能看到结果!

2、利用可逆学习进行基于梯度的超参数优化

Gradient-basedHyperparameterOptimizationthroughReversibleLearning

DougalMaclaurin,DavidDuvenaud,RyanP.Adams

2015/2/11

通过在整个训练过程中不断向后链接导数(chainingderivativesbackwards),我们计算了对于所有超参数交叉验证的表现的具体梯度。这些梯度让我们能够优化数以千计的超参数,包括步长(stepsize)和动量(momentum)、初始权重分布、丰富参数化的正则化方法(richlyparameterizedregularizationschemes)、以及神经网络结构。

“对训练集做训练”的实验——生成10个例子(每个类别一个例子),使得通过这些例子进行训练的网络的验证集损失最少——是一个相当酷的想法(它在本质上是在MNIST上学习从数字0到数字9的原型图像)。

3、在线加速学习

SpeedLearningontheFly

Pierre-YvesMassé,YannOllivier

2015/11/8

我们将学习轨迹的整体表现视为是关于步长(stepsize)的函数,提出了通过对步长本身做梯度下降来适应(adapt)步长。重要的是,这种适应的计算可以用很少的代价在线进行,无需向后迭代全部数据。

我觉得作者们准确无误地击中了在线学习面临的挑战。如果是在线训练神经网络的话,我想这些挑战可能会变得更艰巨,现在对此几乎没有让人满意的解决方法。所以这是一个让我非常兴奋的研究方向。

4、空间变换网络

SpatialTransformerNetworks

MaxJaderberg,KarenSimonyan,AndrewZisserman,KorayKavukcuoglu

2015/6/5

我们引入了一个全新的可学习(learnable)模块,空间变化模块(theSpatialTransformer),使得我们能够对网络内的数据进行空间变换操作。这个模块可以被插到现有的卷积结构中,赋予神经网络主动对特征图进行空间转换的能力,无需任何额外增加训练时的监督或是对于优化步骤的调整。

虽然之前就有对于DRAW做的研究,也提出了相似的方法来进行图像的学习变换,但这篇论文比DRAW的那一篇深入得多,并且让这种方法能够实现更多样的变换种类。我也非常喜欢他们在卷积神经网络中应用这种空间变换的想法,这也是那篇DRAW论文中所没有的。

对于这篇论文我实在挑不出什么问题,它太严谨了!

5、聚类对于近似最大内积搜索来说是高效的

ClusteringisEfficientforApproximateMaximumInnerProductSearch

AlexAuvolat,SarathChandar,PascalVincent,HugoLarochelle,YoshuaBengio

2015/7/21

“MIPS到MCSS”的变换加上球形聚类,我感到这一组合既精巧又简洁。鉴于与哈希算法相比它的结果相当出色,我认为这个方向非常值得研究。

6、在线无回溯训练递归神经网络

TrainingRecurrentNetworksOnlinewithoutBacktracking

YannOllivier,GuillaumeCharpiat

2015/7/28

RNN的在线训练是一个巨大的尚未解决的问题。

目前人们使用的方法是将反向传播截到只剩几步,这只是一种摸索出来的办法。

这篇论文向一种更为理论式的方法做了努力。我非常喜欢作者们在公式7中展现出来的小技巧,棒极了!并且这也是这个方法的关键步骤。

作者们展示了初步的研究结果,他们也的确没有与截断式反向传播作比较。我非常希望他们能在未来做一下比较。另外,我不认为我对他们“随机梯度下降理论可以应用”的说法买账。

7、利用梯形网络进行半监督式学习

Semi-SupervisedLearningwithLadderNetwork

AnttiRasmus,HarriValpola,MikkoHonkala,MathiasBerglund,TapaniRaiko

2015/7/9

我们将深度学习网络中的监督式学习和非监督式学习混合在一起。我们提出的这个模型,训练后用于同时将监督式学习和非监督式学习的反向传播成本降到最低,无需再使用一层一层处理(layer-wise)的预训练。这基于Valpola(2015)提出的梯形网络,我们将监督式方法加入其中,进一步拓展了梯形网络模型。我们展示了最终获得的这个模型在多种任务中——半监督式环境下MNIST和CIFAR-10分类,以及半监督式和全标记(full-labels)环境下置换不变(permutationinvariant)的MNIST——都有顶尖水准的表现。

这篇论文最让我感到兴奋的就是模型的表现。在MNIST中,只有100个标记过的例子,而这个模型的错误率却可以低到1.13%!这可以与用全部训练集训练的堆叠去噪自编码器(stackeddenoisingautoencoders)媲美了(虽然这是指在做ReLUs和批量正态化之前训练出的自编码器,而这篇论文的模型已经用到了这两种操作)!这与现在深度学习中的一种想法吻合:虽然深度学习领域最近应用于大体量已标记数据集的研究进展都不依赖于任何非监督式学习方法(不像深度学习2000年代中期“起步”的时候),半监督式环境下的非监督式学习可能才是最适合少量已标记数据的数据集的方法。

不幸的是,作者们提到了实验中有一个小问题:虽然训练时他们没有使用多少标记好的数据,模型选择时仍然用到了验证集中全部10k个标记。这当然是不够理想的。

8、通往基于神经网络的推理

TowardsNeuralNetwork-BasedReasoning

BaolinPeng,ZhengdongLu,HangLi,Kam-FaiWong

2015/8/22

我们提出了“神经推理器(NeuralReasoner)”,一种基于神经网络对自然语言语句进行推理的架构。对于给定的问题,神经推理器会从多个得到支持的事实中进行推测,随后为这个问题找出答案。神经推理器具有1)一种特殊的池化交互(interaction-pooling)机制,使得它能够查阅多个事实,以及2)一个深度的架构,使得它能够为推理任务中复杂的逻辑关系进行建模。在问题和事实中没有特别的结构的情况下,神经推理器能够适应不同类型的推理和不同形式的语言表述。我们的实证研究显示,神经推理器完胜现存的其他神经推理系统,在2种困难的人工任务(位置推理和路径规划)中都有不俗的优势。

9、对递归神经网络序列预测的定期采样

ScheduledSamplingforSequencePredictionwithRecurrentNeuralNetworks

SamyBengio,OriolVinyals,NavdeepJaitly,NoamShazeer

2015/6/9

递归神经网络可以被训练用于对给定的输入生成字符序列(sequenceoftokens),比如在机器翻译和读图方面最近的一些成果就是例子。现在进行这种训练的方法包括了在给定当前(递归)状态和之前的字符(previoustoken)的情况下最大化序列中每个元素的可能性(likelihood)。在推断时,之前的字符未知的位置就会被模型自己生成的一个字符所取代。训练和推断之间的差异会导致误差在生成序列的的过程中快速积累。我们提出了一种略微改变训练过程的学习策略,从完全使用真实的之前的字符变成大部分时候使用模型生成的替代字符。我们进行了数个序列预测任务实验,结果显示,这种方法带来了显著的提升效果。

我对于ScheduledSampling方法为何能够起效还有另一种解释。机器学习训练并不会让模型知道它产生的误差的相对质量。从机器学习的角度来说,对一个仅有1个字符错误的输出序列分配高概率,和对一个所有字符都错误的输出序列分配同样高的概率,是一样糟糕的。但是,在读图生成语句的任务中,输出一句只有一个词语与实际情况不同的句子显然是更理想的。

通过将模型训练得稳健于它自己产生的错误,ScheduledSampling方法确保了误差不会累积,让做出离谱预测的可能性大大减小。

10、LSTM:漫游搜索

LSTM:ASearchSpaceOdyssey

KlausGreff,RupeshKumarSrivastava,JanKoutník,BasR.Steunebrink,JürgenSchmidhuber

THE END
1.腾讯音乐娱乐科技申请神经网络模型训练专利,得到适用于终端的神经腾讯音乐娱乐科技申请神经网络模型训练专利,得到适用于终端的神经网络模型 快报金融界灵通君 北京 0 打开网易新闻 体验效果更佳猎豹饿肚子一周,为了活着牺牲太多,强者从不抱怨环境! 爱搞笑的晨晨 1212跟贴 打开APP 猥琐之王封神之作,学长任昌丁花式追女神,让人看得又笑又哭 小古趣影 481跟贴 打开APP 严格追究https://m.163.com/v/video/VPI2DMLA6.html
2.利用EdgeImpulse在线网站自行训练神经网络进行分类识别而基于STM32H7的OpenMV机器视觉模组和云端AI平台Edge Impulse合作,就很好的打通了从数据收集、打标,NN模型训练、优化到部署的整个流程。 去年4月份我们的新品OpenMV4 H7 Plus上市啦,今天我来给大家介绍一下OpenMV4 H7 Plus的新功能——利用EdgeImpulse在线网站自行训练神经网络进行分类识别。 https://www.elecfans.com/d/1532483.html
3.随时间在线训练脉冲神经网络模型的图像数据分类方法与流程10.为了克服上述现有技术的不足,本发明提供一种基于随时间在线训练的脉冲神经网络模型进行图像视觉数据分类的方法,方法取名为ottt(online training through time)。通过本发明提供的方法,可以在训练snn模型时极大地减小训练内存的开销,将训练得到的模型用于计算机图像数据和神经形态图像视觉数据的分类与识别等视觉任务,能够https://www.xjishu.com/zhuanli/55/202210694741.html
4.如何训练YOLOv5神经网络(本地+云端)yolo在线训练1. 本地上训练YOLOv5 # 指定好训练好的模型的路径,然后用这个训练好的模型来初始化我们网络当中的参数,一般训练时都是一开始来进行训练,即default为空 # default='' Yolov5s.pt Yolov5m.pt Yolov5l.pt Yolov5x.pt parser.add_argument('--weights', type=str, default='', help='initial weights https://blog.csdn.net/m0_52127604/article/details/124810089
5.精雕细琢:如何训练一个卷积神经网络在线免费阅读前一章讲解了如何构建一个卷积神经网络,如何使一个卷积神经网络达到期望的分类或预测效果,这就需要对网络进行合理的训练。本章将结合案例介绍卷积神经网络训练的方法、步骤和技巧。 3.1 基本概念一点通 从数学角度看,机器学习的目标是建立起输入数据与输出的函数关系,如果用x代表输入数据、用y代表输出,机器学习的目标https://fanqienovel.com/reader/7109745755388120079
6.机器学习术语表:机器学习基础知识MachineLearningGoogle训练神经网络涉及多次迭代以下两步循环: 在正向传递期间,系统会处理一批用于生成预测结果的样本。系统会将每个 根据每个标签值进行预测。两者的区别在于 预测值,标签值是该样本的损失。 系统会汇总所有样本的损失,以计算总的 当前批次的损失。 在反向传播(反向传播算法)期间,系统会通过以下方式减少损失: 调整所有神经元https://developers.google.cn/machine-learning/glossary/fundamentals?hl=zh-cn
7.智能车竞赛技术报告智能车视觉中国矿业大学我们独立完成了控制方案及系统设计,包括电磁信号采集处理、赛道图像信号采集处理、循迹控制算法及执行、动力电机驱动、十分类神经网络训练、靶标图片识别、单片机之间通信等,最终实现了具有 AI视觉功能的基于电磁与摄像头的快速寻迹智能车控制系统。 智能车是一个软硬件与机械相结合的整体,其中硬件主要包括电源模块、电机https://www.eefocus.com/article/503552.html
8.科学网—[转载]群视角下的多智能体强化学习方法综述通过训练神经网络参数化的策略,能够以完全分散的方式控制集群中的单个无人机。仿真实验展示了先进的群集行为,在紧密队形中执行攻击性机动,同时避免相互碰撞,打破和重新建立队形以避免与移动障碍物碰撞,并在“追赶—逃避”任务中有效协作。此外,模拟环境中学习到的模型可以成功部署到真实的四旋翼无人机上。 2.6 可扩展https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
9.带惩罚项的BP神经网络在线梯度法带惩罚项的BP神经网络在线梯度法,BP神经网络,惩罚项, 在线梯度法, 有界, 收敛,多层前传神经网络在许多领域有着广泛的应用。网络的泛化能力,即网络在训练集以外的样本上的精度,是标志神经网络性能的一个重要https://wap.cnki.net/touch/web/Dissertation/Article/2004094593.nh.html
10.2020年最值得收藏的60个AI开源工具语言&开发李冬梅你可以用开发者训练好的深度神经网络来编辑所有类型的人脸照片。SC-FEGAN 非常适合使用直观的用户输入与草图和颜色生成高质量的合成图像。 项目地址:https://github.com/JoYoungjoo/SC-FEGAN LazyNLP (用于创建海量文本数据集) LazyNLP 的使用门槛很低——用户可以使用它爬网页、清洗数据或创建海量单语数据集。 https://www.infoq.cn/article/2uabiqaxicqifhqikeqw
11.基于机器学习的自适应码率算法的进一步探索与改进2、改善训练效率,在线终身学习 第二个挑战来自强化学习的低训练效率。在强化学习方案中,智能体通过与环境交互获得{状态,动作,回报}集合,随后通过学习增大每次动作获得的回报。然而,在学习过程中,智能体无法获取在当前状态下的最优动作,因此不能为神经网络提供准确的梯度方向更新,基于强化学习的ABR算法也遭受着这个缺点https://www.thepaper.cn/newsDetail_forward_8338381
12.分析股市预测的深度学习技术持续学习是一种用于连续地学习用于若干任务的模型同时牢记从较早任务学习的信息的技术,其中在训练新任务期间旧任务中的数据不再可用。因此,持续学习允许神经网络在股票预测的不同任务中连续地积累知识并且减轻灾难性遗忘。对于股票预测任务,深度模型主要在静态均匀分布的数据集上进行训练,这些数据集无法随时间调整或扩展其https://maimai.cn/article/detail?fid=1810610871&efid=k8hnL1-NvJ2kAfW8I85mSg
13.7.3.2用Deeplearning4j训练卷积神经网络.pdf范东来7.3.2用Deeplearning4j训练卷积神经网络.pdf-范东来-人民邮电出版社 关闭预览 想预览更多内容,点击免费在线预览全文 免费在线预览全文 254第7章Spark深度学习:Deeplearning4j络的感受野以一个像素的步长进行滑动,C1层选用了6种卷积核,代表了6种特征。从这里可以看出,卷积层的 https://max.book118.com/html/2021/0819/7031135200003162.shtm
14.机器学习:使用批归一化有哪些缺点?典型的在线学习管道 由于它依赖于外部数据源,数据可以单独到达,也可以成批到达。由于每次迭代中batch size的变化,它不能很好地概括输入数据的规模和shift,这最终会影响性能。 不适用于循环神经网络 在卷积神经网络中,尽管批归一化可以显著提高训练速度和泛化能力,但事实证明,它们很难应用于循环体系结构。批归一化可以应https://www.51cto.com/article/616760.html