离线训练和在线训练|在线学习_爱学大百科共计11篇文章
聚会时总是默不作声是因为你没有看过爱学大百科,不知道大家聊关于离线训练和在线训练话题,没关系看这里就对了。










1.onlinetraining和offlinetraining在深度学习中什么意思?文章浏览阅读1.6k次。在线学习与离线学习是两种不同的机器学习模式。离线学习用于处理大数据和复杂模型,需要完整数据集,训练完成后才应用模型。在线学习则按顺序处理数据,实时更新模型,适用于数据流场景,如监控视频分析。两种方式各有优劣,常结合使用,如离线预训练加https://blog.csdn.net/Adam897/article/details/129908295
2.相比于离线训练,在线训练的好处有什么?问答在线模型训练的流程如下图所示。在线模型训练意味着我可以用实时线上传输化的数据,然后用我们的实时机器学习模型训练框架去做训练。在线训练虽然数据是实时进来的,但你的模型并不是从 0 开始的。而是说我从离线先训练好这个模型,我站在离线模型的巨人的肩膀上,再往上去优化。 以上内容摘自《个性化推荐系统开发指南》https://developer.aliyun.com/ask/446535
3.推荐系统中模型训练及使用流程的标准化腾讯云开发者社区在实践中,我们对特征的采集、配置、处理流程以及输出形式进行了标准化:通过配置文件和代码模板管理特征的声明及追加,特征的选取及预处理等流程。由于使用哪些特征、如何处理特征等流程均在同一份配置文件中定义,因而,该方案可以保证离线训练和在线预测时特征处理使用方式的代码级一致性。https://cloud.tencent.com/developer/article/1539413
4.科学网—[转载]群视角下的多智能体强化学习方法综述对于大规模多智能体系统,处理数量和规模方面的动态变化是当前深度强化学习方法面临的突出挑战。基于学习(深度学习、强化学习)设计的迭代式问题求解方法是离线策略学习的基础范式。由于环境及对手的非平稳性,离线训练的蓝图策略通常很难直接运用于在线对抗。在线博弈对抗过程与离线利用模拟多次对抗学习博弈过程不同,博弈各方https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
5.蚂蚁金服核心技术:百亿特征实时推荐算法揭秘备注:弹性特征带来一个显著的优势:只要用足够强的L1稀疏性约束,在单机上就能调试任意大规模的特征训练,带来很多方便。我们的hashmap实现是KV化的,key是特征,value是vector的首地址。 离线训练优化 经过这样的改造后,在离线批量学习上,带来了以下变化: 在线训练优化 https://maimai.cn/article/detail?fid=1010621115&efid=mIQCHnkj0zjxlpygUmo5mg
6.粗排优化探讨得物技术离线在线一致性分析 待补充实际效果 四 样本设计 粗排相较于精排样本选择偏差(SSB)的问题更加严重,借鉴召回经验,可以通过适当采样减少偏差。采样设计的目的也是希望离线训练样本尽可能与线上分布一致。 样本选择方法 负样本可选范围: 曝光未点击样本; 全库除转化外样本; https://blog.itpub.net/70027824/viewspace-3000851/
7.基于Kmeans聚类的CSI室内定位AET基于指纹的定位模型分为离线训练阶段和在线定位阶段,模型如图1所示。 离线训练阶段的任务是建立一个位置指纹数据库。首先要选择参考点的位置,然后在每个参考点处测量来自信标的信号特征,最后处理信号特征保存在数据库中。这个数据库也被称为位置指纹地图。 http://www.chinaaet.com/article/3000057028
8.京东搜索在线学习探索实践参数更新:首先我们将用离线的 30 天的数据训练出来的模型参数导入 ps,之后 flink 的在线训练将实时更新参数,该 ps 直接服务于线上。目前在线和实时共用一套 ps,为了之后的稳定性要求,我们之后会将实时和在线分开。 模型校准:为了确保模型的准确性,支持天/周粒度的完整模型更新进行校准。 https://www.infoq.cn/article/Z6lL9VNskAH3BCxZS1A7
9.强化学习离线模型离线模型和在线模型推荐系统里非常常见,并且往往非常的隐蔽的一种数据分布不一致的情况被称之为冰山效应,也就是说离线训练用的是有偏的冰山上的数据,而在线上预估的时候,需要预测的是整个冰山的数据,包括大量冰面以下的数据!我们看下面这张图。左边是我们的Baseline,绿色的表示正样本,红色表示负样本,灰色部分表示线上由于推荐系统的“https://blog.51cto.com/u_14499/11815202
10.如何在本地(离线)使用PrivateGPT训练自定义AI聊天机器人PrivateGPT是一个新的开源项目,可以让你在AI聊天机器人界面中与你的文件进行私人互动。为了了解更多,让我们学习如何在本地使用PrivateGPT训练一个定制的人工智能聊天机器人。https://www.wbolt.com/how-train-ai-chatbot-using-privategpt-offline.html
11.基于多时间尺度多智能体深度强化学习无功电压控制方法与流程8.(2)将有载调压分接头(oltc)、电容器组(cb)和储能(es)均定义为智能体,在第一时间尺度阶段,搭建环境和智能体交互的马尔科夫决策过程的交互训练环境;在该过程的交互训练中,输入光伏、风机和负荷的预测数据,采用ddqn算法(double q network)进行离线训练无功优化离散动作策略;训练完毕,得到智能体oltc、cb和es的调https://www.xjishu.com/zhuanli/60/202110597000.html
12.飞桨开源框架的大规模分布式训练能力工业级稀疏参数弹性调度在线服务方面,ElasticCTR采用Paddle Serving中高吞吐、低延迟的稀疏参数预估引擎,高并发条件下是常见开源组件吞吐量的10倍以上。 3.可定制 用户可以通过统一的配置文件,修改训练中的训练方式和基本配置,包括在离线训练方式、训练过程可视化指标、HDFS上的存储配置等。除了通过修改统一配置文件进行训练任务配置外,ElasticCTRhttps://github.com/PaddlePaddle/ElasticCTR/
13.趋动云平台为工程师提供了在线的开发环境,内置多种 AI 算法库和开发工具,工程师可以在线编辑优化模型。另外在开发环境中,工程师可随时提交训练任务,在线训练和分析,实时进行模型优化。 ▌主要功能 AI 模型在线开发 深度整合算法开发环境,支持 JupyterLab/网页终端/ssh 登录等多种开发调试工具。 https://2d.ciftis.org/view/productmgr/productdetail?productId=50485