Nature2017AlphaGoZero强化学习论文解读系列(二)

开通VIP,畅享免费电子书等14项超值服

首页

好书

留言交流

下载APP

联系客服

2020.12.04

人工智能的长远目标之一就是研发出一种能够从白板开始学习,并逐渐进化成拥有超常能力的算法。目前,AlphaGo成为了第一个打败围棋世界冠军的程序。AlphaGo的核心是使用深度网络在蒙特卡罗树搜索过程中进行棋盘局势判断和走棋选择决策。这些深度网络使用监督学习的方法从人类专家棋谱中进行训练,使用强化学习的方法从自我对弈的过程中进行训练。本文介绍一种只使用强化学习的训练算法,除了需要基本的围棋规则以外,不需要人类围棋数据、指导和领域知识。本文使用强化学习得到的深度网络能够同时进行棋盘局势判断预测获胜者,以及走棋选择决策。这个深度网络能够提高树搜索的优势,使得在下一次迭代时,保证更高质量的走棋选择,以及更强的自我对弈。AlphaGoZero从白板开始学习,能够达到超常的能力,并在实践中,以100:0的绝对优势战胜了此前发布的、打败欧洲围棋世界冠军的AlphaGo。

目前人工智能领域的成就主要得益于监督学习,使用监督学习的方法从人类专家数据中进行训练,达到复制、模仿人类专家决策的目的。然而,人类专家的数据通常是昂贵、不可靠甚至不可得到的。即使能够得到可靠的专家数据,训练得到的监督学习系统通常也会达到一个性能瓶颈。相反,强化学习系统从自我经历中训练,原则上可以超越人类的能力,并且能够发掘出人类不曾发现的未知领域。目前,使用强化学习训练的深度神经网络在这一目标上已经取得了快速的发展。例如计算机游戏Atari、3D虚拟环境等,强化学习系统已经超越了人类水平。然而,对于人工智能领域最富挑战性的围棋游戏,上述通用的方法还无法取得和人类水平相当的成就,主要是因为围棋游戏需要在一个浩大的搜索空间中进行精准、复杂的lookahead搜索。

AlphaGo是第一个在围棋领域达到超越人类水平的程序。此前发布的AlphaGoFan打败了欧洲围棋冠军FanHui。回顾一下,AlphaGo使用两个深度网络,策略网络输出下一步走棋的概率分布,值网络判断当前棋面局势,预测获胜者。策略网络一开始使用监督学习的方式,用于加快预测专家走棋;随后使用PolicyGradient的强化学习算法进行重新优化。值网络从策略网络自我对弈过程中进行训练学习,用于预测获胜者。离线训练完后,再使用蒙特卡罗搜索树将深度网络结合起来,使用策略网络将搜索局限在高概率的动作,使用值网络(和FastRolloutPolicy结合)来评估叶子节点的棋面局势,多次执行蒙特卡罗模拟,最终选择访问次数最多的边对应的动作为下一步棋的下法。值得注意的是,后续发布的AlphaGoLee使用了相似的方法,打败了18届围棋世界冠军李世石。

AlphaGoZero不同于AlphaGoFan和AlphaGoLee。主要体现在如下几个方面:

为了实现上述目标,本文研究出一种新的强化学习训练算法,将蒙特卡罗树搜索树纳入训练阶段。新的算法使得性能提升更快、学习更加精确和稳定。

ExpandandEvaluate:叶子节点访问次数达到一个阈值时,此时进行扩展并评估。使用神经网络产生先验概率和评估值。。「此处体现了神经网络是如何指导蒙特卡罗搜索的」。

Play:多次模拟过程结束后,得到搜索概率分布,搜索概率正比于访问次数的某次方,称为温度参数(temperatureparameter)。那么最终的走棋Play,可以使用该分布来抽样动作。

上述描述的是连续训练的版本,即每次都使用最新轮次的神经网络进行自我对弈和产生训练数据,实际自我对弈和训练过程中,部分细节和上述不大一样:

使用强化学习管道方式来进行AlphaGoZero的训练。训练从完全随机的行为开始,一直持续3天,期间不需要人为的干涉。在这个过程中,总共生成了490万个自我对弈棋局,每次蒙特卡罗搜索进行1600次模拟,相应的每步走棋平均花费0.4s,神经网络的参数使用70万个minibatch,每个minibatch包含2048个棋面进行更新,该残差神经网络包含20个残差块residualblocks。

a)合并了PolicyNetwork和ValueNetwork;

b)用ResNet替换了CovNet;

c)强化学习训练算法从PolicyGradient改为PolicyIteration.

AlphaGoZero中的改进值得我们思考,最振奋人心的就是排除了人类棋谱数据和人工特征,完全从强化学习自我对弈过程中进行学习。这其中有两点感悟。

引用周志华的一段话,“如果说深度学习能在模式识别应用中取代人工设计特征,那么这里显示出强化学习能在启发式搜索中取代人工设计评分函数。这个意义重大。启发式搜索这个人工智能传统领域可能因此巨变,或许不亚于模式识别计算机视觉领域因深度学习而产生的巨变。机器学习进一步蚕食其他人工智能技术领域。”

可以看出这里面的核心包括深度学习、强化学习、启发式搜索。本文分别对这三个方面都有所改进,深度学习体现在ResNet的使用以及合并两个神经网络;强化学习体现在PolicyIteration算法的使用,启发式搜索体现在引入PolicyIteration训练过程以及改进蒙特模拟过程(Expansion、Evaluation合并、最终动作决策由选择访问次数最多的动作改成根据访问次数计算动作分布,再随机抽样动作)。这里面的核心中的核心仍然是蒙特卡罗搜索,深度学习和强化学习都是为蒙特卡罗搜索服务的。

可能可以改进的几个核心要素包括单一的改进以及多种元素的结合方式改进。例如强化学习算法中最终报酬函数的设计、深度学习中是否有更好的网络架构,如SENet等、蒙特卡罗搜索树除了用在强化学习算法中,能否用在深度学习算法中,指导误差的反向传播等;蒙特卡罗模拟结束后,是否有其他更好方式来计算动作概率分布。当然另一方面,有没有新的领域能够替代蒙特卡罗搜索树的核心地位,具有前瞻性的问题是否只有通过大量模拟才能得到反馈,是否还有其他的方式能够更好的进行反馈。

知乎:如何评价AlphaGoZero?

AlphaZero实战

「阿尔法狗」再进化!

(1)点击页面最上方'AINLP',进入公众号主页。

(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。

THE END
1.onlinetraining和offlinetraining在深度学习中什么意思?文章浏览阅读1.6k次。在线学习与离线学习是两种不同的机器学习模式。离线学习用于处理大数据和复杂模型,需要完整数据集,训练完成后才应用模型。在线学习则按顺序处理数据,实时更新模型,适用于数据流场景,如监控视频分析。两种方式各有优劣,常结合使用,如离线预训练加https://blog.csdn.net/Adam897/article/details/129908295
2.相比于离线训练,在线训练的好处有什么?问答在线模型训练的流程如下图所示。在线模型训练意味着我可以用实时线上传输化的数据,然后用我们的实时机器学习模型训练框架去做训练。在线训练虽然数据是实时进来的,但你的模型并不是从 0 开始的。而是说我从离线先训练好这个模型,我站在离线模型的巨人的肩膀上,再往上去优化。 以上内容摘自《个性化推荐系统开发指南》https://developer.aliyun.com/ask/446535
3.推荐系统中模型训练及使用流程的标准化腾讯云开发者社区在实践中,我们对特征的采集、配置、处理流程以及输出形式进行了标准化:通过配置文件和代码模板管理特征的声明及追加,特征的选取及预处理等流程。由于使用哪些特征、如何处理特征等流程均在同一份配置文件中定义,因而,该方案可以保证离线训练和在线预测时特征处理使用方式的代码级一致性。https://cloud.tencent.com/developer/article/1539413
4.科学网—[转载]群视角下的多智能体强化学习方法综述对于大规模多智能体系统,处理数量和规模方面的动态变化是当前深度强化学习方法面临的突出挑战。基于学习(深度学习、强化学习)设计的迭代式问题求解方法是离线策略学习的基础范式。由于环境及对手的非平稳性,离线训练的蓝图策略通常很难直接运用于在线对抗。在线博弈对抗过程与离线利用模拟多次对抗学习博弈过程不同,博弈各方https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
5.蚂蚁金服核心技术:百亿特征实时推荐算法揭秘备注:弹性特征带来一个显著的优势:只要用足够强的L1稀疏性约束,在单机上就能调试任意大规模的特征训练,带来很多方便。我们的hashmap实现是KV化的,key是特征,value是vector的首地址。 离线训练优化 经过这样的改造后,在离线批量学习上,带来了以下变化: 在线训练优化 https://maimai.cn/article/detail?fid=1010621115&efid=mIQCHnkj0zjxlpygUmo5mg
6.粗排优化探讨得物技术离线在线一致性分析 待补充实际效果 四 样本设计 粗排相较于精排样本选择偏差(SSB)的问题更加严重,借鉴召回经验,可以通过适当采样减少偏差。采样设计的目的也是希望离线训练样本尽可能与线上分布一致。 样本选择方法 负样本可选范围: 曝光未点击样本; 全库除转化外样本; https://blog.itpub.net/70027824/viewspace-3000851/
7.基于Kmeans聚类的CSI室内定位AET基于指纹的定位模型分为离线训练阶段和在线定位阶段,模型如图1所示。 离线训练阶段的任务是建立一个位置指纹数据库。首先要选择参考点的位置,然后在每个参考点处测量来自信标的信号特征,最后处理信号特征保存在数据库中。这个数据库也被称为位置指纹地图。 http://www.chinaaet.com/article/3000057028
8.京东搜索在线学习探索实践参数更新:首先我们将用离线的 30 天的数据训练出来的模型参数导入 ps,之后 flink 的在线训练将实时更新参数,该 ps 直接服务于线上。目前在线和实时共用一套 ps,为了之后的稳定性要求,我们之后会将实时和在线分开。 模型校准:为了确保模型的准确性,支持天/周粒度的完整模型更新进行校准。 https://www.infoq.cn/article/Z6lL9VNskAH3BCxZS1A7
9.强化学习离线模型离线模型和在线模型推荐系统里非常常见,并且往往非常的隐蔽的一种数据分布不一致的情况被称之为冰山效应,也就是说离线训练用的是有偏的冰山上的数据,而在线上预估的时候,需要预测的是整个冰山的数据,包括大量冰面以下的数据!我们看下面这张图。左边是我们的Baseline,绿色的表示正样本,红色表示负样本,灰色部分表示线上由于推荐系统的“https://blog.51cto.com/u_14499/11815202
10.如何在本地(离线)使用PrivateGPT训练自定义AI聊天机器人PrivateGPT是一个新的开源项目,可以让你在AI聊天机器人界面中与你的文件进行私人互动。为了了解更多,让我们学习如何在本地使用PrivateGPT训练一个定制的人工智能聊天机器人。https://www.wbolt.com/how-train-ai-chatbot-using-privategpt-offline.html
11.基于多时间尺度多智能体深度强化学习无功电压控制方法与流程8.(2)将有载调压分接头(oltc)、电容器组(cb)和储能(es)均定义为智能体,在第一时间尺度阶段,搭建环境和智能体交互的马尔科夫决策过程的交互训练环境;在该过程的交互训练中,输入光伏、风机和负荷的预测数据,采用ddqn算法(double q network)进行离线训练无功优化离散动作策略;训练完毕,得到智能体oltc、cb和es的调https://www.xjishu.com/zhuanli/60/202110597000.html
12.飞桨开源框架的大规模分布式训练能力工业级稀疏参数弹性调度在线服务方面,ElasticCTR采用Paddle Serving中高吞吐、低延迟的稀疏参数预估引擎,高并发条件下是常见开源组件吞吐量的10倍以上。 3.可定制 用户可以通过统一的配置文件,修改训练中的训练方式和基本配置,包括在离线训练方式、训练过程可视化指标、HDFS上的存储配置等。除了通过修改统一配置文件进行训练任务配置外,ElasticCTRhttps://github.com/PaddlePaddle/ElasticCTR/
13.趋动云平台为工程师提供了在线的开发环境,内置多种 AI 算法库和开发工具,工程师可以在线编辑优化模型。另外在开发环境中,工程师可随时提交训练任务,在线训练和分析,实时进行模型优化。 ▌主要功能 AI 模型在线开发 深度整合算法开发环境,支持 JupyterLab/网页终端/ssh 登录等多种开发调试工具。 https://2d.ciftis.org/view/productmgr/productdetail?productId=50485