自然语言强化学习:一个可处理语言反馈的强化学习框架数学推理

在人工智能发展史上,强化学习(RL)凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。然而,随着应用场景日益复杂,传统强化学习过度依赖单一数值奖励的局限性日益凸显。在现实世界中,反馈信号往往是多维度、多模态的,例如教练的口头指导、视觉示范,或是详细的文字说明。近日,来自伦敦大学学院、上海交通大学、布朗大学、新加坡国立大学和布里斯托大学的联合研究团队提出了全新的自然语言强化学习(NaturalLanguageReinforcementLearning,NLRL)范式,成功将强化学习的核心概念类比为基于自然语言的形式,开辟了一条通向更智能、更自然的AI决策学习的新道路。

关键词:人工智能,强化学习,自然语言强化学习

从数值到语言:新范式的萌芽

这种困境促使研究团队开始探索一个更具突破性的方向:能否设计一个框架,让AI系统完全通过与环境的交互来学习,而不依赖任何人类标注数据?传统强化学习为这个问题提供了灵感,但其单一数值奖励的机制难以满足复杂场景的需求。团队意识到需要一个新范式,既要继承强化学习的数学严谨性,又要具备自然语言的表达丰富性。这个思路最终导向了NLRL的诞生。

自然语言强化学习

传统强化学习虽然在数学上严谨优雅,但其单一数值反馈机制与人类学习方式存在巨大差距。研究团队从象棋教练指导学生的场景获得启发:教练不会简单说“这步棋的价值是0.7”,而是会详细解释“这个走法控制了中心,限制了对手的机动性,同时为王翼进攻创造了条件”。这种观察促使团队思考:能否将丰富的语言反馈信号整合进学习框架?

这个思路的关键突破来自对传统强化学习本质的重新思考:既然传统RL可以通过蒙特卡洛和时序差分等方法进行学习,这些方法是否可以扩展到语言空间?基于这一洞察,团队提出了NLRL框架,将传统RL中的数学概念类比为语言形式。以下是一个对应关系示意图。

具体而言,NLRL引入“语言任务指令”(T_L)替代抽象的奖励函数,并设计了度量函数F来评估轨迹描述D_L(τ_π)与任务指令的完成度。

语言化的决策框架

在NLRL中,MDP的每个组成部分都被重新定义为文本形式。状态变为包含完整上下文的自然语言描述,动作空间转化为带有推理过程的语言决策,而环境反馈则扩展为包含原因分析的详细评估。例如,在迷宫环境中的状态描述会包含位置、周围环境、历史探索等完整信息。

语言策略与推理

NLRL中的策略π_L被创新性地分解为两个部分:π_L(a,c|s)=π_L(c|s)π_L(a|c,s),其中c代表思维过程。这种分解使得决策过程变得完全透明。以国际象棋为例,系统会先分析局势(“白方控制中心点,黑方王翼薄弱”),提出计划(“开展王翼进攻,同时固守中心”),最后给出具体建议(“Nf3-e5,威胁f7并加强中心控制”)。

语言价值评估

NLRL将传统的标量值函数V(s)和Q(s,a)扩展为语言价值函数V^L_π和Q^L_π。这种扩展使得评估变得更加丰富和可解释。评估结果不仅包含胜率,还涵盖空间利用、子力配合等多个角度的分析,并提供具体的改进建议。

从理论到实践

基于这一洞察,研究团队提出了三个关键技术创新,构建了完整的NLRL实现框架:

语言蒙特卡洛估计

在传统强化学习中,蒙特卡洛方法通过采样多条轨迹并取平均值来估计状态价值。但在语言空间中,我们无法直接对文本描述进行算术平均。研究团队利用大语言模型作为信息聚合器(aggregator)。

具体来说,当系统需要评估某个状态时,它会:

1.从该状态开始采样K条完整轨迹

2.将每条轨迹转化为详细的文本描述

3.使用专门设计的提示让LLM扮演“专家评估员”的角色

4.LLM分析所有轨迹描述,提取关键模式和见解

5.生成一个综合性的评估报告

例如,在国际象棋中,系统可能会分析说:“基于观察到的20个可能发展,此位置对白方有利。在80%的变化中,白方能够通过控制中心格和针对f7的战术威胁获得优势。但需要注意的是,如果黑方成功完成王翼城堡,局势可能趋于平衡。”

语言时序差分学习

传统的时序差分学习基于贝尔曼方程,将长期价值分解为即时奖励和未来状态的折扣价值。NLRL创新性地提出了语言贝尔曼方程,将这种时序关系扩展到语言空间。

在NLRL中,语言时序差分学习包含三个关键组件:

1.文本描述生成器d:将状态转换(s,a,r,s')转化为自然语言描述

3.语言组合函数G2:将即时反馈与未来评估结合

这三个组件协同工作的方式如下:

在实践中,这种方法表现出了独特的优势:

语言策略提升

这种提升机制的工作原理是:

1.对当前状态收集多个候选动作

2.获取每个动作的语言价值评估

4.生成改进的决策链路,包括:

例如,在迷宫导航任务中,系统可能会这样分析:“向右移动是最优选择,因为:1)根据之前的探索经验,右侧路径更可能通向目标2)即使这条路不是最短路径,也为我们保留了回退的选项3)相比向上移动可能遇到的死胡同,这个选择风险更小。”

实验验证

研究团队在三个具有代表性的环境中系统地验证了NLRL的效果。这些实验不仅展示了NLRL的性能优势,更重要的是证明了该框架在不同类型任务中的普适性和可扩展性。

迷宫导航-基于prompt的自然语言策略迭代

在复杂的迷宫导航任务中,研究团队测试了纯基于prompt的自然语言策略迭代算法。研究团队选择了两种具有挑战性的迷宫环境进行测试:双T型迷宫和中等复杂度迷宫。在这些环境中,智能体需要从随机初始位置导航到目标位置,同时避免撞墙。通过语言TD估计,在双T型迷宫中实现了-11.19±2.86的平均奖励,远优于基线方法的-27.29±4.43。但NLRL真正的优势不仅仅体现在数字上。系统能够清晰地解释每个决策的原因,例如:“选择向南移动,因为:1)北边是死胡同,我们之前已经探索过2)南向路径似乎更接近目标位置3)即使这条路不是最优解,我们仍保留了向东撤退的选项。”实验还发现,增加变化数量和前瞻步数能进一步提升性能。

突破棋(Breakthrough)-自然语言价值函数

在5x5突破棋(状态空间达108)这个几乎没有人类数据的任务中,NLRL纯依靠环境反馈训练出了高质量的语言评估器。通过混合不同水平的MCTS策略数据构建训练集,评估器达到了0.85的准确率,显著超越LLAMA-3.1-70b的0.61以及GPT-4o的0.58。更重要的是,这个评估器能提供专业级别的局势分析。例如:“黑方略占优势,原因有三:1)在d4和e4形成了稳固的双兵链2)白方右翼的兵形成了薄弱点3)黑方的推进速度比白方快半步。建议白方通过c3-c4来争夺中心控制权。”

井字棋-自然语言Actor-Critic

在井字棋环境中,团队实现了完整的语言Actor-Critic系统。通过动作选择掩码防止幻觉、经验缓冲区解决遗忘问题、持续的迭代优化等创新,系统在随机对手下实现90%以上胜率,面对确定性策略甚至能保持100%的胜率,同时保持决策过程的清晰可解释性。

本论文由伦敦大学学院、上海交通大学、布朗大学、布里斯托大学、新加坡国立大学以及萨里大学的研究者合作完成。冯熙栋是论文第一作者,即将毕业于伦敦大学学院。目前是GoogleDeepMind的ResearchScientist,主要研究方向包括强化学习与生成模型。刘博是本推文作者,新加坡国立大学二年级博士生,研究强化学习、推理及机器学习系统在复杂现实环境中的应用。

THE END
1.什么是人工智能领域的ReinforcementLearning现实世界中强化学习的应用广泛而深远,从自动驾驶、机器人控制,到游戏玩家和推荐系统,都能看到它的身影。以 AlphaGo 为例,这是一个结合了蒙特卡洛树搜索和深度神经网络的深度强化学习系统,它学会了在围棋游戏中战胜世界级的人类选手。这一成就不仅展示了深度强化学习的强大能力,也激发了更多领域对强化学习技术的探索和https://open.alipay.com/portal/forum/post/159101016
2.ReinforcementLearning)和在线强化学习(OnlineReinforcementLearnin训练过程:在离线强化学习中,模型使用这些离线数据进行训练,目标是从这些数据中学习到一个良好的策略,而不需要与真实环境进行交互。 应用场景:离线强化学习适用于那些收集数据困难或成本高昂的场景,以及对实时反馈不敏感的任务。 在线强化学习: 数据获取:在线强化学习是在实际环境中与代理程序交互,通过与环境的交互来获取https://blog.csdn.net/qq_40718185/article/details/139231769
3.强化学习的基本概念在线学习和离线学习针对的是在强化学习模型在训练过程中交互数据的使用方式。在线学习的强化学习模型,会在一个交互之后,立即用本次交互得到的经验进行训练。而离线学习的强化学习模型,往往是先将多个交互的经验存储起来,然后在学习的时候,从存储的经验中取出一批交互经验来学习。 https://www.jianshu.com/p/28625d3a60e6
4.强化学习离线模型离线模型和在线模型强化学习离线模型 离线模型和在线模型 在推荐算法领域,时常会出现模型离线评测效果好,比如AUC、准召等指标大涨,但上线后业务指标效果不佳,甚至下降的情况,比如线上CTR或CVR下跌。 本文尝试列举一些常见的原因,为大家排查问题提供一点思路。 1. 离线、在线特征不一致https://blog.51cto.com/u_14499/11815202
5.离线强化学习图18-1 离线强化学习和在线策略算法、离线策略算法的区别 18.2 批量限制 Q-learning 算法 图18-1 中的离线强化学习和离线策略强化学习很像,都要从经验回放池中采样进行训练,并且离线策略算法的策略评估方式也多种多样。因此,研究者们最开始尝试将离线策略算法直接照搬到离线的环境下,仅仅是去掉算法中和环境交互的https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/
6.科学网—[转载]强化学习在资源优化领域的应用随着强化学习在围棋、游戏等序列化决策领域大放异彩、在多智能体协作等领域取得较好表现,它的一些优秀特性也得到了资源优化领域的关注。首先,基于强化学习的解决方案决策非常高效。虽然强化学习策略的训练非常耗时,但是这些训练工作可以离线进行,实际中只需要利用训练好的模型进行推理,因而在绝大部分情况下可以做到近似实时https://blog.sciencenet.cn/blog-3472670-1312677.html
7.2020届计算机科学方向毕业设计(论文)阶段性汇报本文将信息流推荐系统与用户的多步交互过程建模为马尔科夫决策过程,并基于强化学习算法设计动态决定信息流推荐中广告间隔的模型,以优化广告收入与用户参与度指标的综合长期目标。针对在推荐系统场景中部署在线强化学习模型的挑战,本文使用推荐系统的历史日志数据离线训练强化学习策略,并通过实验对相应算法的可行性及效果进行https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
8.多目标排序在快手短视频推荐中的实践多目标精排:从手工融合到Learn To Rank 复杂多目标:Ensemble Sort和在线自动调参 重排序:Listwise、强化学习和端上重排序 总结和展望 01 快手短视频推荐场景介绍 1. 关于快手 快手主要的流量形态 有4个页面: ① 发现页:致力于让用户看见更大的世界,分为单列和双列两种形态。 https://maimai.cn/article/detail?fid=1603183032&efid=T7RIoRo14AcJUC_PIXWVhA
9.从搜索到智能客服:阿里开放强化学习技术演进与实践书籍机器之心近日,阿里开放了一本描述强化学习在实践中应用的书籍《强化学习在阿里的技术演进与业务创新》,这本书重点描述了阿里巴巴在推动强化学习输出产品及商业化的实践过程。例如在在搜索场景中对用户的浏览购买行为进行 MDP 建模、在推荐场景中使用深度强化学习与自适应在线学习帮助每?个用户迅速发现宝贝、在智能客服中赋予阿里https://www.jiqizhixin.com/articles/2018-02-06-3
10.强化学习究竟是什么?它与机器学习技术有什么联系?▌3.最常用的深度学习算法原理是什么? Q-learning和SARSA是两种最常见的不理解环境强化学习算法,这两者的探索原理不同,但是开发原理是相似的。Q-learning是一种离线学习算法,智能体需要从另一项方案中学习到行为a*的价值;SARSA则是一种在线学习算法,智能体可从现有方案指定的当前行为来学习价值。这两种方法都很容易https://m.elecfans.com/article/662224.html
11.探索(Exploration)还是利用(Exploitation)?强化学习如何tradeoff同样的思想也可以应用到强化学习算法中。在下面的章节中,基于附加奖励的探索奖励方法大致分为两类:一是发现全新的状态,二是提高智能体对环境的认知。 1、基于计数的探索策略 如果将状态的新颖程度作为内在奖励的条件,那就需要寻找一种方法来衡量当前状态是新颖的还是经常出现的。一种直观的方法是统计一个状态出现的次https://www.zhuanzhi.ai/document/8c25cb38ff7b6a2acc8610b42ff00fdd
12.基于深度强化学习的水面无人艇路径跟踪方法6.针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种基于深度强化学习的水面无人艇路径跟踪方法,无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。 7.为了解决上述技术问题,本发明采用了如下的技术方案: https://www.xjishu.com/zhuanli/54/202210772926.html/
13.在对齐AI时,为什么在线方法总是优于离线方法?根据人类反馈的强化学习(RLHF)随着大型语言模型(LLM)发展而日渐成为一种用于 AI 对齐的常用框架。不过近段时间,直接偏好优化(DPO)等离线方法异军突起 —— 无需主动式的在线交互,使用离线数据集就能直接对齐 LLM。这类方法的效率很高,也已经得到实证研究的证明。但这也引出了一个关键问题: https://m.thepaper.cn/newsDetail_forward_27434433
14.深度强化学习实战:用OpenAIGym构建智能体全书先简要介绍智能体和学习环境的一些入门知识,概述强化学习和深度强化学习的基本概念和知识点,然后重点介绍 OpenAI Gym 的相关内容,随后在具体的 Gym 环境中运用强化学习算法构建智能体。本书还探讨了这些算法在游戏、自动驾驶领域的应用。本书适合想用 OpenAI Gym 构建智能体的读者阅读,也适合对强化学习和深度强化https://www.epubit.com/bookDetails?id=UB83082546ee4de
15.深度强化学习针对控制的强化学习实践:设计、测试和部署 产品 了解深度强化学习使用的产品。 Reinforcement Learning Toolbox Deep Learning Toolbox Parallel Computing Toolbox Simulink Simscape 30天免费试用 快速入门 有疑问吗? 请与深度强化学习专家交流。 发邮件给我们https://ww2.mathworks.cn/solutions/deep-learning/deep-reinforcement-learning.html
16.机器学习学术速递[7.26]腾讯云开发者社区【1】 Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings 标题:离线强化学习的模型选择:医疗设置的实际考虑 作者:Shengpu Tang,Jenna Wiens 机构:Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA 备注:33 pahttps://cloud.tencent.com/developer/article/1852823
17.人工智能技术研究人工智能技术创新自动离线强化学习 自动算法选择与动态调参 自动表示学习 样本高效强化学习 环境学习Environment Learning 知识驱动离散环境学习 知识驱动连续环境学习 数据驱动基于ML的环境学习 数据驱动基于因果的环境学习 AI基础架构 系统框架System Architecture 异构计算Heterogeneous Computing https://www.4paradigm.com/about/research.html