AWAC:使用离线数据集加速在线强化学习技术博客技术支持京天机器人官网

该方法通过从先前的数据集(专家演示,先前的实验数据或随机探索数据)进行离线训练,然后通过在线交互快速进行微调来学习复杂的行为

经过强化学习(RL)训练的机器人有潜力用于各种挑战性的现实世界中的问题。要将RL应用于新问题,通常需要设置环境,定义奖励功能,并通过允许机器人从头开始探索新环境来训练机器人解决任务。尽管这最终可能行得通,但是这些“在线”RL方法非常耗费数据,并且针对每个新问题重复执行这种数据效率低下的过程,因此很难将在线RL应用于现实世界中的机器人技术问题。如果我们能够在多个问题或实验之间重用数据,而不是每次都从头开始重复数据收集和学习过程。这样,我们可以大大减少遇到的每个新问题的数据收集负担。

图1:使用离线数据集加速在线RL的问题。在(1)中,机器人完全从离线数据集中学习策略。在(2)中,机器人可以与世界互动并收集策略样本,以改进策略,使其超出脱机学习的范围。

我们使用标准基准HalfCheetah移动任务来分析从离线数据学习和后续的微调问题中的挑战。以下实验是使用先前的数据集进行的,该数据集包含来自专家策略的15个演示和从这些演示的行为克隆中采样的100个次优轨迹。

图2:与非策略方法相比,基于策略的方法学习起来较慢,这是因为非策略方法能够“缝合”良好的轨迹,如左图所示右:在实践中,我们看到在线改进缓慢使用策略上的方法。

1.数据效率

利用诸如RL演示之类的先前数据的一种简单方法是,通过模仿学习对策略进行预训练,并通过基于策略的RL算法(例如AWR或DAPG)进行微调。这有两个缺点。首先,先验数据可能不是最佳的,因此模仿学习可能无效。第二,基于策略的微调是数据效率低下的,因为它不会在RL阶段重用先前的数据。对于现实世界的机器人技术而言,数据效率至关重要。考虑右边的机器人,尝试以先前的轨迹达到目标状态T1和T2。策略上的方法不能有效地使用此数据,但是可以有效地“缝合”进行动态编程的策略外算法T1和T2以及使用价值函数或模型。在图2的学习曲线中可以看到这种效果,其中按策略使用的方法要比按策略使用的参与者批评方法慢一个数量级。

图3:使用离线策略RL进行离线培训时,引导错误是一个问题。左:该策略利用了远离数据的错误Q值,从而导致Q函数的更新不佳。中:因此,机器人可能会执行超出分配范围的动作。正确:引导错误在使用SAC及其变体时会导致不良的离线预训练。

原则上,该方法可以通过贝尔曼自估计未来回报的价值估计V(s)或行动价值估计Q(s,a),从非政策性数据中高效学习。但是,当将标准的非策略参与者批评方法应用于我们的问题(我们使用SAC)时,它们的性能较差,如图3所示:尽管重放缓冲区中已有数据集,但这些算法并未从脱机中显着受益训练(通过比较图3中的SAC(从头开始)和SACfD(在先)行可以看出)。此外,即使策略已通过行为克隆进行了预训练(“SACfD(预训练)”),我们仍然会观察到性能最初出现下降。

此挑战可归因于策略外引导错误累积。在训练期间,Q估计值将不会完全准确,尤其是在推断数据中不存在的动作时。策略更新利用了高估的Q值,使估计的Q值更糟。该问题如图所示:错误的Q值导致对目标Q值的错误更新,这可能导致机器人采取较差的措施。

3.非平稳行为模型

诸如BCQ,BEAR和BRAC之类的现有脱机RL算法建议通过防止策略偏离数据太远来解决引导问题。关键思想是通过将策略π限制为接近“行为策略”πβ来防止引导错误,即重播缓冲区中存在的动作。下图说明了这个想法:通过从πβ采样动作,可以避免利用远离数据分布的错误Q值。

但是,πβ通常是未知的,尤其是对于脱机数据,必须从数据本身进行估计。许多离线RL算法(BEAR,BCQ,ABM)明确地将参数模型拟合到来自重播缓冲区的πβ分布的样本。在形成估计值后,现有方法以各种方式实施策略约束,包括对策略更新的惩罚(BEAR,BRAC)或针对策略训练的采样动作的体系结构选择(BCQ,ABM)。

尽管具有约束的离线RL算法在离线状态下表现良好,但仍难以通过微调来改进,如图1中的第三幅图所示。我们看到,纯离线RL性能(图1中为“0K”)要好得多。比SAC。但是,通过在线微调的其他迭代,性能提高非常缓慢(从图1中的BEAR曲线的斜率可以看出)。是什么原因导致这种现象?

问题在于当在微调期间在线收集数据时,要建立一个准确的行为模型。在脱机设置中,行为模型仅需训练一次,但在在线设置中,必须在线更新行为模型以跟踪传入数据。在线(在“流”环境中)训练密度模型是一个具有挑战性的研究问题,在线和离线数据的混合导致了潜在的复杂多模式行为分布,这使难度变得更大。为了解决我们的问题,我们需要一种策略外的RL算法,该算法会约束该策略以防止脱机不稳定和错误累积,但并不过于保守,以至于由于行为建模不完善而无法进行在线微调。我们提议的算法(将在下一部分中讨论)通过采用隐式约束来实现。

图4:AWAC的示意图。高权重的过渡将以高权重回归,而低权重的过渡将以低权重回归。右:算法伪代码。

那么,这在解决我们较早提出的问题方面的实际效果如何?在我们的实验中,我们表明,我们可以从人类示范和非政策性数据中学习困难,高维,稀疏的奖励灵巧操纵问题。然后,我们使用随机控制器生成的次优先验数据评估我们的方法。本文还包括标准MuJoCo基准环境(HalfCheetah,Walker和Ant)的结果。

灵巧的操纵

图5.顶部:在线培训后显示的各种方法的性能(笔:200K步,门:300K步,重新安置:5M步)。下图:显示了具有稀疏奖励的敏捷操作任务的学习曲线。步骤0对应于离线预训练后开始在线训练。

我们的目标是研究代表现实世界机器人学习困难的任务,其中最重要的是离线学习和在线微调。其中一种设置是Rajeswaran等人在2017年提出的一套灵巧操作任务。这些任务涉及使用MuJoCo模拟器中的28自由度五指手进行复杂的操作技能:笔的手旋转,通过解锁手柄打开门,捡起球体并将其重新定位到目标位置。这些环境面临许多挑战:高维动作空间,具有许多间歇性接触的复杂操纵物理以及随机的手和物体位置。这些环境中的奖励功能是任务完成的二进制0-1奖励。Rajeswaran等。为每个任务提供25个人工演示,虽然这些演示不是完全最佳的,但确实可以解决任务。由于此数据集非常小,因此我们通过构造行为克隆策略,然后从该策略中进行采样,又生成了500条交互数据轨迹。

使用脱离策略的RL进行强化学习的优势在于,我们还可以合并次优数据,而不仅仅是演示。在本实验中,我们使用Sawyer机器人在模拟的桌面推动环境中进行评估。

为了研究从次优数据中学习的潜力,我们使用了由随机过程生成的500条轨迹的非政策数据集。任务是将对象推入40cmx20cm目标空间中的目标位置。

结果显示在右图中。我们看到,尽管许多方法以相同的初始性能开始,但是AWAC可以在线上最快地学习,并且实际上能够有效地使用离线数据集,这与某些完全无法学习的方法相反。

能够使用先前的数据并在新问题上快速进行微调,为研究开辟了许多新途径。我们对使用AWAC从RL中的单任务机制到多任务机制以及任务之间的数据共享和通用化感到非常兴奋。深度学习的优势在于其在开放世界环境中进行概括的能力,我们已经看到,它改变了计算机视觉和自然语言处理的领域。为了在机器人技术中实现相同类型的概括,我们将需要利用大量先验数据的RL算法。但是机器人技术的一个主要区别是,为一项任务收集高质量的数据非常困难-通常与解决任务本身一样困难。这与例如计算机视觉相反,在计算机视觉中,人可以标记数据。因此,主动数据收集(在线学习)将成为难题的重要组成部分。

这项工作还提出了许多算法方向。请注意,在这项工作中,我们专注于策略π和行为数据πβ之间的不匹配动作分布。在进行非政策学习时,两者之间的边际状态分布也不匹配。凭直觉,考虑两个解决方案A和B的问题,其中B是更高收益的解决方案,而非政策性数据则说明了提供的解决方案A。即使机器人在在线浏览过程中发现了解决方案B,非策略数据仍主要包含来自路径A的数据。因此,Q函数和策略更新是针对遍历路径A时遇到的状态进行计算的,即使它不会遇到这些状态执行最佳策略时。以前已经研究了这个问题。考虑到两种类型的分布不匹配,可能会导致采用更好的RL算法。

最后,我们已经在使用AWAC作为加快研究速度的工具。当我们着手解决任务时,我们通常不会尝试使用RL从头开始解决它。首先,我们可以遥控机器人以确认任务可以解决;那么我们可能会进行一些硬编码的策略或行为克隆实验,以查看简单的方法是否已经可以解决它。使用AWAC,我们可以保存这些实验中的所有数据,以及其他实验数据(例如超参数扫描RL算法时的数据),并将其用作RL的先前数据。

DonghuRobotLaboratory,2ndFloor,BaoguInnovationandEntrepreneurshipCenter,WuhanCity,HubeiProvince,ChinaTel:027-87522899,027-87522877

THE END
1.什么是人工智能领域的ReinforcementLearning现实世界中强化学习的应用广泛而深远,从自动驾驶、机器人控制,到游戏玩家和推荐系统,都能看到它的身影。以 AlphaGo 为例,这是一个结合了蒙特卡洛树搜索和深度神经网络的深度强化学习系统,它学会了在围棋游戏中战胜世界级的人类选手。这一成就不仅展示了深度强化学习的强大能力,也激发了更多领域对强化学习技术的探索和https://open.alipay.com/portal/forum/post/159101016
2.ReinforcementLearning)和在线强化学习(OnlineReinforcementLearnin训练过程:在离线强化学习中,模型使用这些离线数据进行训练,目标是从这些数据中学习到一个良好的策略,而不需要与真实环境进行交互。 应用场景:离线强化学习适用于那些收集数据困难或成本高昂的场景,以及对实时反馈不敏感的任务。 在线强化学习: 数据获取:在线强化学习是在实际环境中与代理程序交互,通过与环境的交互来获取https://blog.csdn.net/qq_40718185/article/details/139231769
3.强化学习的基本概念在线学习和离线学习针对的是在强化学习模型在训练过程中交互数据的使用方式。在线学习的强化学习模型,会在一个交互之后,立即用本次交互得到的经验进行训练。而离线学习的强化学习模型,往往是先将多个交互的经验存储起来,然后在学习的时候,从存储的经验中取出一批交互经验来学习。 https://www.jianshu.com/p/28625d3a60e6
4.强化学习离线模型离线模型和在线模型强化学习离线模型 离线模型和在线模型 在推荐算法领域,时常会出现模型离线评测效果好,比如AUC、准召等指标大涨,但上线后业务指标效果不佳,甚至下降的情况,比如线上CTR或CVR下跌。 本文尝试列举一些常见的原因,为大家排查问题提供一点思路。 1. 离线、在线特征不一致https://blog.51cto.com/u_14499/11815202
5.离线强化学习图18-1 离线强化学习和在线策略算法、离线策略算法的区别 18.2 批量限制 Q-learning 算法 图18-1 中的离线强化学习和离线策略强化学习很像,都要从经验回放池中采样进行训练,并且离线策略算法的策略评估方式也多种多样。因此,研究者们最开始尝试将离线策略算法直接照搬到离线的环境下,仅仅是去掉算法中和环境交互的https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/
6.科学网—[转载]强化学习在资源优化领域的应用随着强化学习在围棋、游戏等序列化决策领域大放异彩、在多智能体协作等领域取得较好表现,它的一些优秀特性也得到了资源优化领域的关注。首先,基于强化学习的解决方案决策非常高效。虽然强化学习策略的训练非常耗时,但是这些训练工作可以离线进行,实际中只需要利用训练好的模型进行推理,因而在绝大部分情况下可以做到近似实时https://blog.sciencenet.cn/blog-3472670-1312677.html
7.2020届计算机科学方向毕业设计(论文)阶段性汇报本文将信息流推荐系统与用户的多步交互过程建模为马尔科夫决策过程,并基于强化学习算法设计动态决定信息流推荐中广告间隔的模型,以优化广告收入与用户参与度指标的综合长期目标。针对在推荐系统场景中部署在线强化学习模型的挑战,本文使用推荐系统的历史日志数据离线训练强化学习策略,并通过实验对相应算法的可行性及效果进行https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
8.多目标排序在快手短视频推荐中的实践多目标精排:从手工融合到Learn To Rank 复杂多目标:Ensemble Sort和在线自动调参 重排序:Listwise、强化学习和端上重排序 总结和展望 01 快手短视频推荐场景介绍 1. 关于快手 快手主要的流量形态 有4个页面: ① 发现页:致力于让用户看见更大的世界,分为单列和双列两种形态。 https://maimai.cn/article/detail?fid=1603183032&efid=T7RIoRo14AcJUC_PIXWVhA
9.从搜索到智能客服:阿里开放强化学习技术演进与实践书籍机器之心近日,阿里开放了一本描述强化学习在实践中应用的书籍《强化学习在阿里的技术演进与业务创新》,这本书重点描述了阿里巴巴在推动强化学习输出产品及商业化的实践过程。例如在在搜索场景中对用户的浏览购买行为进行 MDP 建模、在推荐场景中使用深度强化学习与自适应在线学习帮助每?个用户迅速发现宝贝、在智能客服中赋予阿里https://www.jiqizhixin.com/articles/2018-02-06-3
10.强化学习究竟是什么?它与机器学习技术有什么联系?▌3.最常用的深度学习算法原理是什么? Q-learning和SARSA是两种最常见的不理解环境强化学习算法,这两者的探索原理不同,但是开发原理是相似的。Q-learning是一种离线学习算法,智能体需要从另一项方案中学习到行为a*的价值;SARSA则是一种在线学习算法,智能体可从现有方案指定的当前行为来学习价值。这两种方法都很容易https://m.elecfans.com/article/662224.html
11.探索(Exploration)还是利用(Exploitation)?强化学习如何tradeoff同样的思想也可以应用到强化学习算法中。在下面的章节中,基于附加奖励的探索奖励方法大致分为两类:一是发现全新的状态,二是提高智能体对环境的认知。 1、基于计数的探索策略 如果将状态的新颖程度作为内在奖励的条件,那就需要寻找一种方法来衡量当前状态是新颖的还是经常出现的。一种直观的方法是统计一个状态出现的次https://www.zhuanzhi.ai/document/8c25cb38ff7b6a2acc8610b42ff00fdd
12.基于深度强化学习的水面无人艇路径跟踪方法6.针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种基于深度强化学习的水面无人艇路径跟踪方法,无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。 7.为了解决上述技术问题,本发明采用了如下的技术方案: https://www.xjishu.com/zhuanli/54/202210772926.html/
13.在对齐AI时,为什么在线方法总是优于离线方法?根据人类反馈的强化学习(RLHF)随着大型语言模型(LLM)发展而日渐成为一种用于 AI 对齐的常用框架。不过近段时间,直接偏好优化(DPO)等离线方法异军突起 —— 无需主动式的在线交互,使用离线数据集就能直接对齐 LLM。这类方法的效率很高,也已经得到实证研究的证明。但这也引出了一个关键问题: https://m.thepaper.cn/newsDetail_forward_27434433
14.深度强化学习实战:用OpenAIGym构建智能体全书先简要介绍智能体和学习环境的一些入门知识,概述强化学习和深度强化学习的基本概念和知识点,然后重点介绍 OpenAI Gym 的相关内容,随后在具体的 Gym 环境中运用强化学习算法构建智能体。本书还探讨了这些算法在游戏、自动驾驶领域的应用。本书适合想用 OpenAI Gym 构建智能体的读者阅读,也适合对强化学习和深度强化https://www.epubit.com/bookDetails?id=UB83082546ee4de
15.深度强化学习针对控制的强化学习实践:设计、测试和部署 产品 了解深度强化学习使用的产品。 Reinforcement Learning Toolbox Deep Learning Toolbox Parallel Computing Toolbox Simulink Simscape 30天免费试用 快速入门 有疑问吗? 请与深度强化学习专家交流。 发邮件给我们https://ww2.mathworks.cn/solutions/deep-learning/deep-reinforcement-learning.html
16.机器学习学术速递[7.26]腾讯云开发者社区【1】 Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings 标题:离线强化学习的模型选择:医疗设置的实际考虑 作者:Shengpu Tang,Jenna Wiens 机构:Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA 备注:33 pahttps://cloud.tencent.com/developer/article/1852823
17.人工智能技术研究人工智能技术创新自动离线强化学习 自动算法选择与动态调参 自动表示学习 样本高效强化学习 环境学习Environment Learning 知识驱动离散环境学习 知识驱动连续环境学习 数据驱动基于ML的环境学习 数据驱动基于因果的环境学习 AI基础架构 系统框架System Architecture 异构计算Heterogeneous Computing https://www.4paradigm.com/about/research.html