基于PMU量测的同步发电机参数辨识方法与流程

本发明涉及一种基于pmu量测的同步发电机参数辨识方法。

背景技术:

同步发电机作为电力系统最为核心的设备,其参数的准确性对电力系统仿真、动/暂态稳定分析、系统规划、潮流分析等有着重要影响。同步发电机实际运行时参数受到多种因素影响,可能偏离厂家设计参数值,采用厂家参数可能难以模拟发电机动态行为,因此需要进行参数辨识得到更为准确的运行时参数。

目前同步发电机参数辨识方法主要分为两类:离线辨识和在线辨识。离线辨识通过在发电机停机时期进行短路试验、抛载试验等扰动试验,根据试验数据进行参数辨识。但由于现场试验较为繁琐且有可能给发电机带来安全隐患,离线辨识工作实施较为困难。而在线辨识避免了试验的繁琐,且基于实际运行数据辨识的结果更为接近运行工况,故更适合于发电机参数辨识。

发电机参数辨识优化算法目前包括主要有粒子群算法[1-2],最小二乘法[3-6],蚁群算法[7-8]等。由于发电机参数辨识的优化规模较小,因此在合适的辨识数据下,多种优化方法均可以取得较好的辨识精度,故参数辨识算法的侧重点更在于辨识数据的选择与处理。而辨识数据的选择与处理过程中仍存在数据有效性检验问题及量测标幺化问题尚未得到有效解决,因此本发明针对这两个问题,提出了一种基于pmu量测的同步发电机参数辨识新方法。首先提出了完整的参数辨识数据有效性检验方法,分别对数据扰动深度及采样频率进行了检验,以确保数据包含准确充足的次暂态量动态信息,以保证辨识精度;随后提出了针对发电机参数辨识的量测数据标幺化方法,该方法优势在于有效解决了标幺化问题,避免了在标幺化过程中采用不准确的发电机参数带来误差,并且标幺化体系与传统标幺化体系完全一致,因此可以与已有大部分商用软件保持标幺制的一致性。

技术实现要素:

本发明的目的在于针对目前没有具体有效的方法来解决发电机参数辨识数据的有效性检验问题以及解决发电机参数辨识的量测数据标幺化问题,提供一种基于pmu量测的同步发电机参数辨识方法。

为实现上述目的,本发明的技术方案是:一种基于pmu量测的同步发电机参数辨识方法,其特征在于:包括如下步骤,

s1、对量测数据进行有效性检验,仅当量测数据同时满足扰动深度检验条件和最低采样频率条件时,该量测数据有效;

s2、对除励磁电压电流外的量测数据进行标幺化;

s3、依据发电机稳态方程辨识稳态参数xd,xq;

s4、利用辨识得到的xd求解励磁电压电流基值,并对励磁电压电流量测数据进行标幺化;

s5、基于步骤s3、s5完整标幺化后的数据,分别辨识出d轴、q轴的暂态及次暂态参数。

进一步的,所述步骤s1具体实现如下,

1)数据扰动深度检验

根据实用六阶模型中次暂态电势方程:

由式(1)计算出每个测量点对应的次暂态电势e″d,e″q,相应地计算出各相邻测量点的次暂态电势变化量δe″d,δe″q;若要准确测量到扰动激发的次暂态过程,则要求δe″d,δe″q能够被准确测量到,即要求该相邻测量点的δud,δuq,δid,δiq能够被准确测量到;

2)采样频率检验

pmu采样频率的检验判据为:

若pmu量测满足扰动深度检验条件和最低采样频率条件,则认为该pmu量测数据有效,能够进行暂态、次暂态参数的辨识。

进一步的,所述步骤s3具体实现如下,

已知励磁电流if的基值ifb计算公式:

ifb=(xad(有名值)iab)/(ωbldf(有名值))

(3)其中,iab,ωb分别为定子电流、角速度的基值,ldf(有名值)为d轴绕组与励磁绕组的互感;xad(有名值)为直轴电枢反应电抗;ldf(有名值)能够根据空载额定励磁条件求得:

其中,uab为定子电压的基值,if0(有名值)为空载额定励磁电流;

将式(4)代入式(3)可得:

由式(5)可得:

其中,if(有名值)为发电机励磁电流有名值。

将式(6)代入下式(7)的发电机稳态方程:

可得转换后的发电机稳态方程如下:

通过式(8)即可在已知稳态量测的ud,uq,id,iq,if(有名值),if0(有名值)值的情况下,辨识出发电机稳态参数xd,xq。

进一步的,所述步骤s5具体实现如下,

将发电机六阶实用模型公式:

进行公式转换后,得到暂态、次暂态参数的辨识方程:

其中,该方程为dq轴解耦方程,即fd只包含d轴参数,fq只包含q轴参数;

由于稳态参数xd,xq为已求解参数,因此仅需求解暂态、次暂态参数,即fd(t)=fd(x′d,x″d,t′d0,t″d0,t),fq(t)=fq(x′q,x″q,t′q0,t″q0,t);将参数辨识问题转换为非线性优化问题,具体如下:

其中tn表示第n个采样时刻,n为总采样点数,带下标c的参数为厂家给定参数值,将辨识参数限定在厂家给定参数的0.1倍到10倍之间符合工程应用需求,又能将辨识结果限定在合理范围内,避免了辨识效果不稳定的情况;采用内点法分别求解式,即可得到d轴与q轴的暂态及次暂态参数。

相较于现有技术,本发明具有以下有益效果:

本发明所述方法可以解决参数辨识过程中的数据有效性检验问题和量测数据标幺化问题,为辨识数据的评估和选优提供了有效方案,且辨识过程避免了采用不准确参数进行量测标幺化,提高了参数辨识精度。

附图说明

图2为本发明pscad短路试验仿真系统图;

图3为本发明辨识参数和厂家给定参数的拟合电流曲线;

图4为本发明辨识参数和厂家给定参数的拟合电流曲线。

具体实施方式

下面结合附图,对本发明的技术方案进行具体说明。

本发明一种基于pmu量测的同步发电机参数辨识方法,其特征在于:包括如下步骤,

(3)其中,iab,ωb分别为定子电流、角速度的基值,ldf(有名值)为d轴绕组与励磁绕组的互感;ldf(有名值)能够根据空载额定励磁条件求得:

(8)

以下为本发明的具体实现过程。

本发明的基于pmu量测的同步发电机参数辨识方法的完整算法步骤为:

1)进行量测数据有效性检验,只有数据同时满足扰动深度检验条件和最低采样频率条件时,才利用其进行辨识。

2)对除励磁电压电流外的其它量测数据进行标幺化;

3)根据发电机稳态条件辨识稳态参数,将稳态数据代入式辨识参数xd,xq;

4)利用辨识得到的xd求解励磁电压电流基值,并对励磁电压电流量测数据进行标幺化;

5)通过求解式,分别辨识出d轴、q轴的暂态及次暂态参数,结束计算。

本发明主要完成了同步发电机参数辨识的数据有效性检验;基于参数分步辨识的数据标幺化;基于pmu量测的完整参数辨识此三方面的工作。

1.辨识数据有效性检验

(1)数据扰动深度检验

检验数据的扰动深度,实质上是检验扰动激发的次暂态过程是否足以被准确测量到,因此本文结合pmu测量精度提出更为合理的数据扰动深度检验方法。根据实用六阶模型中次暂态电势方程:

可以计算出每个测量点对应的次暂态电势e″d,e″q,相应地可以计算出各相邻测量点的次暂态电势变化量δe″d,δe″q。若要准确测量到扰动激发的次暂态过程,则要求δe″d,δe″q能够被准确测量到,即要求该相邻测量点的δud,δuq,δid,δiq能够被准确测量到。

以辨识d轴参数为例,其辨识数据的扰动深度检验过程为:

(1)根据实际pmu配置计算uq,id的测量精度εu,εi;

(2)计算出各相邻测量点的次暂态电势变化量δe″q;

(3)若要准确测量到δe″q,则要求该测量点满足条件|δuq|>εu,|δid|>εi;

(4)考虑到辨识需要一定的数据冗余量,要辨识d轴的两个次暂态参数,

则至少需要四个测量点满足|δuq|>εu,|δid|>εi。

(2)采样频率检验

根据香农采样定理,为了不失真地恢复模拟信号,采样频率应不小于模拟信号频谱中最高频率的2倍。实际扰动中发电机次暂态量中除了工频分量外,还包含了扰动引入的各谐波分量,若主要分析其中的工频分量,则最低采样频率应不小于2倍工频。

若pmu量测满足扰动深度检验条件和最低采样频率条件,则进行暂态、次暂态参数的辨识,若不满足其中的任一检验条件,则判定量测数据中次暂态量信息不足,因此该数据不适合进行次暂态参数的辨识,只能利用其辨识稳态及暂态参数(暂态量衰减过程较为漫长,可以默认pmu量测包含暂态量信息)。

基于参数分步辨识的数据标幺化

(1)标幺化问题

同步发电机实用模型是应用最广泛的发电机模型,因此本文选取同步发电机六阶实用模型进行参数辨识,同步发电机六阶实用模型如式所示:

其中d轴待辨识参数有xd,x′d,x″d,t′d0,t″d0,q轴待辨识参数有xq,x′q,x″q,t′q0,t″q0(忽略电枢电阻ra)。除特殊标注外,本文中所有参数及变量均为标幺值。在辨识参数之前,需要先对量测数据进行标幺化,大部分量测数据的基值都较容易求得(采用传统xad基值系统),但励磁电压uf和励磁电流if的基值ufb,ifb的计算需要用到待辨识参数:

其中iab,ωb,sab分别为定子电流、角速度和容量的基值,ldf(有名值)为d轴绕组与励磁绕组的互感。由上式可见求解励磁电流或电压的基值需要参数值xad(有名值)=xd(有名值)-xl(有名值),其中xd(有名值)又为待辨识参数,也就是说励磁电压与电流的标幺化需要准确的待辨识参数值,这使得辨识与标幺化过程陷入矛盾。

为解决此问题,一种解决方案是根据发电机的厂家给定参数进行标幺化,另一种针对智能优化算法的解决方案是根据智能优化算法中的当前粒子值进行标幺化,但两种方案的标幺化过程都建立在未经验证的参数值之上,标幺化数据可能存在误差,更无法保证辨识结果的准确性。

(2)稳态参数与暂态、次暂态参数分步辨识

参数辨识与标幺化过程的矛盾,集中在励磁电压与电流的标幺化过程需要用到待辨识参数xd(有名值),因此本文提出解决方案:首先对部分量测数据进行标幺化(励磁电压与电流除外),根据标幺化后数据辨识出稳态参数,然后利用辨识出的稳态参数进行完整的数据标幺化,最后进行暂态、次暂态参数的辨识。

稳态参数与暂态、次暂态参数分步辨识的方法如下:

根据发电机稳态方程:

若已知稳态量测的ud,uq,id,iq,if值,则可以唯一辨识出稳态参数xd,xq。但同样的,稳态方程中各参数与变量都为标幺值,此过程无法避免励磁电流if的标幺化。

(3)无需励磁电流标幺化的稳态参数辨识

本文提出解决方案的特点就在于稳态参数辨识过程无需励磁电流标幺化。推导过程如下:

已知ifb=(xad(有名值)iab)/(ωbldf(有名值)),其中ldf(有名值)可根据空载额定励磁条件求得:

其中if0(有名值)为空载额定励磁电流。将式代入式可得:

将式再代入式可得:

式即经过公式推导转换后的发电机稳态方程,建立该方程无需对励磁电流进行标幺化,因此可以在未辨识出参数值时进行求解。根据式辨识出发电机稳态参数xd,xq后,再将xd代入式求解励磁电压电流的基值,就可以进行完整的量测数据标幺化,用于暂态、次暂态参数的辨识。

此方法优势在于很好地解决了参数辨识过程的标幺化问题,并且标幺化体系传统标幺化体系完全一致,因此可以与已有大部分商用软件保持标幺制的一致性。除此之外,将稳态参数与暂态、次暂态参数分步辨识,减少了单步辨识的参数个数,有利于提高辨识精度。

3.基于pmu量测的完整参数辨识

(1)暂态、次暂态参数辨识

将发电机六阶实用模型进行公式转换后可得到暂态、次暂态参数的辨识方程:

其中该方程为dq轴解耦方程,即fd只包含d轴参数,fq只包含q轴参数,解耦可以减少单次辨识过程的待辨识参数个数,有利于提高辨识精度。

本文将稳态参数与暂态、次暂态参数分步辨识,故方程中的未知数只有暂态、次暂态参数,即fd(t)=fd(x′d,x″d,t′d0,t″d0,t),fq(t)=fq(x′q,x″q,t′q0,t″q0,t)。将参数辨识问题转化为非线性优化问题:

其中tn表示第n个采样时刻,n为总采样点数,带下标c的参数为厂家给定参数值,将辨识参数限定在厂家给定参数的0.1倍到10倍之间符合工程应用需求,又能将辨识结果限定在合理范围内,避免了辨识效果不稳定的情况。采用内点法分别求解式,即可得到d轴与q轴的暂态及次暂态参数。

以下为本发明的一具体实施例

1.标幺化方法有效性验证

为了验证基于参数分步辨识的量测数据标幺化方法,此处采用pscad仿真数据进行参数辨识,以d轴参数辨识为例,对比了基于本文标幺化方法的参数辨识结果与基于普通标幺化方法的参数辨识结果。采用pscad仿真数据进行参数辨识的好处是发电机参数的真值是已知的,因此可以评判辨识结果的优劣。

本文方法优先辨识发电机稳态参数,然后根据准确的稳态参数值进行励磁电压电流的标幺化,而普通标幺化方法直接采用厂家给定参数进行励磁电压电流的标幺化。为了比较本文标幺化方法与普通标幺化方法,设厂家给定参数为参数准确值的1.1倍,普通标幺化方法采用厂家给定参数计算励磁电压电流的基值并进行标幺化,随后分别采用两种方法进行参数辨识。两种方法除标幺化过程不一致以外,其它过程保持一致,以d轴参数辨识为例,辨识结果如表1所示。

表1本文标幺化方法与普通标幺化方法的比较

由表1可见,采用本文标幺化方法的辨识结果中d轴参数的精度远高于普通标幺化方法。采用不准确的厂家参数对励磁电压电流进行标幺化相当于使励磁量测值包含了较大比例的静差,导致了d轴参数辨识结果误差较大。由此证明了本文标幺化方法的有效性。

2.数据有效性检验方法的验证

本文第二章中提出了数据有效性检验方法,为验证该方法,本节仍采用pscad仿真数据,以d轴参数辨识为例,分别根据扰动深度和采样频率不同的四组数据进行辨识。首先设置了四组对照数据如表2所示:

表2数据有效性检验方法验证算例的辨识结果

然后对四组数据中的d轴电流都加入了信噪比为50db(假设原信号功率为1dbw)的高斯白噪声,其幅值约为0.005(标幺值),由此可以假设d轴电流的测量精度εi为0.01(标幺值)。由于扰动深度和采样频率的差别,数据①~④中满足|δid|>εi条件的测量点数分别为64、53、21、14个。基于四组数据的辨识结果如表3所示。

表3数据有效性检验方法验证算例的辨识结果

可见整体辨识精度①>②、③>④,说明在采样频率一致时,提高扰动深度有利于提高辨识精度,而由辨识精度①>③、②>④的结果,说明在扰动深度一致时,提高采样频率有利于提高辨识精度。四组数据对检验条件的满足程度为①>②>③>④,而其整体辨识精度也满足①>②>③>④,由此验证了本文数据有效性检验方法。

3.基于实测pmu数据的参数辨识有效性验证

本节采用福建南埔电厂的744mva容量火电机组实测扰动pmu数据验证本文方法的有效性,扰动类型为机组阀切换过程中调速系统一次调频动作引起的频率波动。

采用本文方法进行参数辨识,辨识结果与发电机的厂家给定参数对比情况如下表所示:

表3基于实测pmu数据的参数辨识结果与厂家给定参数的对比

由表3可见辨识结果与厂家给定参数有一定的差别,分别采用辨识参数与厂家给定参数进行d、q轴电流的拟合,如图3、4所示。

由图3、4可见根据辨识参数拟合的d、q轴电流非常接近测量值,而根据厂家给定参数拟合的电流则有较大的偏差。说明根据本文方法辨识得到参数可以很好地拟合发电机实际动态变化过程,从而证明了本文方法的有效性。

参考文献:

[1]胡家声,郭创新,曹一家.基于扩展粒子群优化算法的同步发电机参数辨识[j].电力系统自动化,2004,28(6):35-40.

[2]寇攀高,付亮,王辉斌,等.基于粒子群-量子操作算法的同步发电机非线性模型参数辨识[j].中国电机工程学报,2012,32(s1):249-255.

[3]寇攀高,周建中,肖剑,等.基于多新息最小二乘法的同步发电机一次性抛载试验参数辨识[j].电网技术,2013,37(2):378-384.

[4]罗建,冯树辉,蔡明,等.基于可观测量的同步发电机参数的时域辨识[j].电力系统自动化,2011,35(7):24-27.

[5]李志强,汤涌,何凤军,等.基于时频变换的同步发电机参数辨识方法[j].中国电机工程学报,2014,34(19):3202-3209.

[6]李志强,汤涌,罗炜.基于时频变换的同步发电机参数辨识中权函数选择与误差分析[j].中国电机工程学报,2016,36(3):828-835.

[7]孙黎霞,鞠平,高运华,等.基于park模型的同步发电机参数辨识[j].中国电机工程学报,2009,29(19):50-56.

[8]郭磊,鞠平,王红印,等.电力系统多台发电机参数的整体辨识[j].电力系统自动化,2011,35(17):44-50.

以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

THE END
1.永磁同步电机参数辨识模型,在线辨识,离线辨机械参数在线离线,电气参数文章浏览阅读846次,点赞7次,收藏8次。本文详细探讨了永磁同步电机的参数辨识模型,区分了在线和离线辨识方法,以及在控制中应用的模型预测控制、滑模控制和参数寻优技术。这些技术对于电机的高效和高性能至关重要。https://blog.csdn.net/gsGSGVf/article/details/135873249
2.在线参数辨识(精选八篇)在线参数辨识 篇1 永磁同步电动机(PMSM)作为高性能伺服系统的执行元件,为保证其控制性能,需要获得精确的电机参数。而电机参数在实际运行过程中会发生变化,因此有必要对电机参数进行在线辨识。目前电机参数在线辨识方法主要有3大类,分别是基于扩展卡尔曼滤波(EKF)的参数辨识方法,基于神经网络(NN)的参数辨识方法以及基于模https://www.360wenmi.com/f/cnkeynae4fwh.html
3.案例9:使用计算—离线和在线使用的主要区别SMOCPro内置的计算引擎对在线和离线实现的行为可能造成不同的结果。这种差异是由离线软件包仿真在线嵌入的方式引起的。更具体地,在离线环境下,当一个参数被计算引擎修改时,变化被记录到存储中,SMOCPro记住这个值并将其用于下一次执行中。然而,在线环境下计算引擎执行的改变仅修改进入内核的值,而不写入数据库中,下一次https://www.jianshu.com/p/28da66d9eafb
4.第四章在线参数辨识.ppt第四章 在线参数辨识 谢谢! 自适应与参数估计之间的关系 线性差分方程的最小二乘估计 线性差分方程输出端等效干扰 气动效益在线估计与控制分配 一、前言 1. 自适应控制系统 不需要参数辨识 需要参数辨识 2. STR中系统辨识的特点 a.结构已知,参数未知?参数辨识 b.在线辨识?递推算法(减少存储量,避免矩阵求逆) https://max.book118.com/html/2018/1028/5124220243001323.shtm
5.永磁同步电机参数辨识模型,在线辨识,离线辨识,电参数机械参数均可永磁同步电机参数辨识模型,在线辨识,离线辨识,电参数机械参数均可辨识,基于最小二乘法,滑模观测,永磁同步电机参数辨识模型,在线辨识,离线辨识,电参数机械参数均可辨识,基于最小二乘法,滑模观测,电压注入,模型参考自适应等机械参数在线离线,电气参数在线(三种https://blog.51cto.com/u_17186198/12813167
6.锂电池实时遗忘因子在线参数辨识与状态估计SOC (state-of-charge)作为电动汽车能量管理、续驶里程估算、动力系统控制等功能的重要依据,其准确性至关重要,而模型参数的精确程度则是准确判定动力电池SOC的核心基础。传统的离线参数辨识使用固定的模型参数描述电池的性能及其响应,然而,在不同的放电倍率以及不同倍率https://www.cjwk.cn/journal/guidelinesDetails/1864954351811006464
7.电动汽车锂电池建模及参数辨识方法研究电池参数实车应用辨识流程如图10所示,在线辨识实车应用效果如图11所示。图11中,监控平台在采样点时间序列6 000点左右触发在线参数辨识,并通过OTA更新实车BMS辨识参数后,BMS对SOC的估算精度快速提高。证明本文参数辨识算法实车应用有效。 图10 电池参数实车应用辨识流程 https://www.dongchedi.com/article/7234405118433788473
8.参数辨识范文8篇(全文)参数辨识 第1篇 关键词:电力系统,参数错误,相对误差D指标,状态估计 0 引言 电网的参数出现错误的原因有:缺少实测参数而直接采用设计参数, 或者因为参数测量条件与实际运行条件差别较大, 使给定的参数值与实际运行的元件参数不同;因改线、改建, 或因环境变化等原因, 实际运行中的元件参数局部地、缓慢地发生了变化https://www.99xueshu.com/w/ikeyrr80k01w.html
9.基于多时间尺度锂电池在线参数辨识及SOC和SOH估计4. 2 SOC 估计结果分析 为验证电池 SOC 在多时间尺度 DEKF 算法下的精 度,本文选取安时积分法作为真实 SOC 参考值,FUDS 第5期 姚昌兴,等:基于多时间尺度锂电池在线参数辨识及 SOC 和 SOH 估计 53 工况电流电压值作为输入,采用离线参数辨识 EKF 和 多时间尺度在线参数辨识 DEKF 滤波算法估 算电池 SOC,并与https://journal.ctbu.edu.cn/zr/cqgszr/article/pdf/20230507
10.永磁同步电机参数辨识研究永磁同步电机参数辨识 在线辨识 离线辨识 最小二乘 死区补偿https://cdmd.cnki.com.cn/Article/CDMD-10358-1017194552.htm
11.异步电动机节能控制中的电机参数离线辨识的中期报告.docx文档介绍:该【异步电动机节能控制中的电机参数离线辨识的中期报告 】是由【niuwk】上传分享,文档一共【2】页,该文档可以免费在线阅读,需要了解更多关于【异步电动机节能控制中的电机参数离线辨识的中期报告 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得https://m.taodocs.com/p-1060718688.html
12.下列属于离线参数辨识的是()。刷刷题APP(shuashuati.com)是专业的大学生刷题搜题拍题答疑工具,刷刷题提供下列属于离线参数辨识的是()。A.最小二乘法B.实验测定法C.模型参考自适应法D.人工智能算法的答案解析,刷刷题为用户提供专业的考试题库练习。一分钟将考试题Word文档/Excel文档/PDF文档转化为在https://www.shuashuati.com/ti/ffda663b6bdc4e338b183a218afcd279.html?fm=bd72b4b984c0832e9b7c474043c824acf0
13.动力锂电池模型参数辨识与荷电状态估计首先,对传统离线参数辨识算法中的最小二乘法(Least Square,LS)和优化算法进行研究,在脉冲放电工况下对其所辨识的模型精度进行分析。然后,针对离线参数辨识存在的问题,对在线参数辨识进行研究,主要是分为两个方面:一是递推最小二乘法(Recursive Least Square,RLS)系列的在线参数辨识,二是卡尔曼滤波算法(Kalman https://wap.cnki.net/lunwen-1022023451.html
14.经纬恒润获得发明专利授权:“一种电池参数在线辨识方法及系统证券之星消息,根据企查查数据显示经纬恒润(688326)新获得一项发明专利授权,专利名为“一种电池参数在线辨识方法及系统”,专利申请号为CN202111514699.X,授权日为2024年5月7日。 专利摘要:本发明实施例提供了一种电池参数在线辨识方法及系统,方法包括:建立电池的等效电路模型,离线获取等效电路模型的相关参数;将需要在线辨识https://stock.stockstar.com/RB2024050800000401.shtml
15.在线参数辨识,on我们在表面和隐极式永磁同步电动机(SPMSMs&IPMSMs)中实现了一种在线参数辨识方法及利用所辨识参数的无传感器控制。 更多例句>> 3) on-line parameter identification 参数在线辨识 1. This paper presents an on-line parameter identification scheme for a sensorless vector control system of general-purpose threhttp://www.dictall.com/indu/098/0977239A892.htm
16.永磁同步电机最小二乘参数辨识永磁同步电机最小二乘参数辨识,可以运行,效果还可以https://www.iteye.com/resource/zxfeng1993-10405844