机器学习领域prototypelearning是什么–PingCode

PrototypeLearning通过在特征空间中寻找每个类别的一个或多个典型代表,即原型,从而简化学习任务。在最简单的形式中,可以将每个类别的原型想象为该类别中所有样本点的中心。这种方法使得数据的复杂性大大降低,因为模型只需基于最邻近原型来判断新实例的类别。比如,最近邻方法(K-NN)便是PrototypeLearning的一种实现,它直接以训练样本作为原型。

不过,在实际应用中,选择合适的原型是实现高效PrototypeLearning的关键。而这通常需要模型通过学习而非静态选择。学习原型可能涉及到优化技术,如聚类算法对原型进行选择和更新。

二、不同实现形式的比较

1.基于规则的原型选择

在这种形式中,规则如最小均方误差可以用来从数据中选择原型。原型通常是那些最能够减少预测错误的实例。这种简单有效的方法有助于快速建立原型,但有时可能过于简化,无法捕获数据的所有复杂性。

2.基于聚类的方法

很多PrototypeLearning算法使用聚类技术,比如K-means算法,它通过优化聚类内距离来确定原型位置。这类算法能够较好地概括数据集的结构,但它们的性能往往依赖于聚类数目的选择。

三、PROTOTYPELEARNING的优点

PrototypeLearning的最大优势在于其高效性和可解释性。通过原型,用户可以直观理解模型是怎样工作的,以及模型为何作出特定的预测。这种可解释性对于许多领域尤其重要,比如在医疗领域,患者和医生都可能对模型的判断需要一个明晰和可信赖的解释。

另一个优势是计算效率,在处理大规模数据集时,通过减少比较的数量,PrototypeLearning可能比基于所有数据点的学习方法更快。这也使得该方法适合于那些具有严格延迟要求的实时系统。

四、PROTOTYPELEARNING的缺点

PrototypeLearning的一个主要缺点是可能出现过度简化。真实世界的数据往往是高度复杂和多变的,而过度依赖于少量的原型可能会导致一些细节和变量的丢失,从而减少模型的精确度。

还有一个问题是原型选择的困难,特别是在多类别和高维数据中,确定最佳的原型数量和位置可以是一个非常棘手的问题。

五、实际应用案例

在实际应用中,PrototypeLearning被广泛应用在那些对模型可解释性要求较高的场景,例如:

1.图像分类

通过学习不同类别的图像原型,模型可以快速识别新图像的类别。这在面部识别或医学影像诊断等领域特别有用。

2.推荐系统

推荐算法可以通过原型学习来理解用户的偏好,并为用户推荐与原型相似的商品或内容。

综上所述,PrototypeLearning以其独特的可解释性和高效性在机器学习领域占有重要的地位。尽管它的简化性使得在某些复杂问题上可能受到限制,但当正确选取原型时,它有力地促进了决策的快速和透明,对很多领域的科学研究和实际应用有着积极意义。

1.什么是机器学习中的原型学习?在机器学习领域,原型学习是一种基于样本的学习方法,其目标是通过从训练数据中构建原型来进行分类和预测。原型可以是数据集中的实例,也可以是通过聚类算法获得的代表性样本。通过计算新样本与原型之间的相似度,原型学习可以进行分类、聚类、异常检测等任务。

2.原型学习在机器学习中有哪些重要应用?原型学习在很多机器学习应用中发挥着重要作用,其中包括图像识别、推荐系统和医疗诊断等。在图像识别中,原型学习可以通过建立图像的原型来学习图像的特征,从而实现图像分类和检索。在推荐系统中,原型学习可以利用用户行为数据构建用户的原型,然后根据原型之间的相似度为用户进行个性化的推荐。在医疗诊断中,原型学习可以利用病例数据构建疾病的原型,辅助医生进行疾病诊断和治疗。

3.原型学习和其他机器学习方法相比有什么优势?相比于其他机器学习方法,原型学习具有以下优势。首先,原型学习可以直接利用样本数据构建原型,不需要对数据进行特征工程,降低了特征提取的难度。其次,原型学习可以更好地适应特定的应用场景,通过调整原型的构建方式和相似度度量方法,可以获得更好的分类性能。最后,原型学习还可以通过增量学习的方式不断更新原型,适应数据分布的变化,保持模型的鲁棒性。

THE END
1.TPVFormer项目常见问题解决方案项目地址: https://gitcode.com/gh_mirrors/tp/TPVFormer 1. 项目基础介绍和主要编程语言 项目名称: TPVFormer 项目简介: TPVFormer 是一个学术研究项目,旨在为自动驾驶领域提供一种替代特斯拉占用网络(Occupancy Network)的解决方案。该项目通过三视角视图(Tri-Perspective View, TPV)来描述3D场景,并使用Transformerhttps://blog.csdn.net/gitblog_00782/article/details/144422637
2.告别离线数据依赖,强化学习微调更高效Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data 【要点】:本文提出了一种新的在线强化学习微调方法Warm-start RL(WSRL),该方法无需保留离线数据即可实现稳定高效的微调,避免了传统方法因离线数据限制导致的性能提升受限。 https://zhuanlan.zhihu.com/p/12183650506
3.FewShotPrompting:基于Transformer的Few这时候,Few-Shot Learning(FSL)技术就派上了用场。FSL旨在通过极少的标注样本快速学习新任务。近年来,随着Transformer架构的普及,基于Transformer的FSL方法受到了广泛关注。其中,Few-Shot Prompting(FSP)是一种基于Prompting的方法,它通过少量示例学习新任务,无需从头开始训练模型。百度智能云千帆大模型平台便提供了丰富的https://developer.baidu.com/article/detail.html?id=2705635
4.FedTP:FederatedLearningbyTransformerPersonalizationFederated learning is an emerging learning paradigm where multiple clients collaboratively train a machine learning model in a privacy-preserving manner. Personalized federated learning extends this paradigm to overcome heterogeneity across clients by learning personalized models. Recently, there have been somehttps://www.ncbi.nlm.nih.gov/pubmed/37220054
5.FedTP:FederatedLearningbyTransformerPersonalizationFedTP: Federated Learning by Transformer Personalization Hongxia Li, Zhongyi Cai, Jingya Wang, Jiangnan Tang, Weiping Ding, Chin-Teng Lin, and Ye Shi 1 Abstract—Federated learning is an emerging learning paradigm where multiple clients collaboratively train a machine learning model in a privacy-http://arxiv.org/pdf/2211.01572
6.训练BlipForConditionalGeneration51CTO博客attention_mask = text_inputs["attention_mask"] # 从零训练用 BlipForConditionalGeneration.from_config() model = BlipForConditionalGeneration.from_pretrained("huggingface.co/Salesforce/blip-image-captioning-base") learning_rate = 5e-5 epochs = 30 https://blog.51cto.com/guotong1988/11945182
7.LearningAcademyTemasekPolytechnicThe Learning Academy (LA) bears testimony to Temasek Polytechnics (TP) commitment to staff capability development. The Academy develops and conducts professional development programmes for TPs staff in areas such as learning-teaching, e-learning and leadhttps://www.tp.edu.sg/research-and-industry/learning-academy.html
8.上海科技大学知识管理系统(KMS):FedTP:FederatedLearningbyFedTP: Federated Learning by Transformer Personalization[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2023,PP(99):1-15. APA Li, Hongxia.,Cai, Zhongyi.,Wang, Jingya.,Tang, Jiangnan.,Ding, Weiping.,&Shi, Ye.(2023).FedTP: Federated Learning by Transformer Personalizationhttps://kms.shanghaitech.edu.cn/handle/2MSLDSTB/312341
9.机器学习术语表:机器学习基础知识MachineLearningGoogleTP 是真正例(正确预测)的数量。 TN 是真负例(正确预测)的数量。 FP 是假正例(错误预测)的数量。 FN 是假负例(错误预测)的数量。 比较准确率与精确率和召回率。 如需了解详情,请参阅机器学习速成课程中的分类:准确率、召回率、精确率和相关指标。 https://developers.google.cn/machine-learning/glossary/fundamentals?hl=ur
10.imagingviadualperspectiveselflearning (TP-SSL), which primarily learns the similarity between adjacent frames and shows excellent denoising performance in calcium imaging [31,32]. The ensuing lightweight 3D network then harnesses this dataset to learn and restore the intricate spatiotemporal relationships inherent within images, https://photonix.springeropen.com/articles/10.1186/s43074-023-00117-0
11.知识库bestincrementalContinual lifelong learning with neural networks: A review(arXiv 2019)[paper] 类别增量学习研究进展和性能评价 (自动化学报 2023)[paper] 2.2 Analysis & Study How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?(NeurIPS 2022)[paper] [WPTP] A Theoretical https://github.com/Vision-Intelligence-and-Robots-Group/Best-Incremental-Learning
12.PythonTP.reset方法代码示例tp.reset()printprint'Learning 2 A->B->C'for_inrange(10):forseqintrainingSet[0:5]: tp.compute(seq, enableLearn =True, computeInfOutput=False) tp.reset()# TP 予測# Learning 1のみだと, A->Aを出力するのみだが,# その後, Learning 2もやると, A->A,Bを出力するようになるhttps://vimsky.com/examples/detail/python-ex-nupic.research.TP-TP-reset-method.html
13.1EdTechLearningToolsInteroperability?BasicLTIv1<file href="BLTI001_Media/learning_icon.gif"/> </resource> 6 Using Learning Information Services with Basic LTI Basic LTI does not provide support for Full LTI run-time services. However, if a Tool Consumer (TC) and Tool Provider (TP) have access to a common set of 1EdTech Learning https://www.imsglobal.org/specs/ltiv1p0/implementation-guide
14.TheHigherLearninginAmerica(高清正版分享)系统标签: learning higher 正版 america paperbound tponed RobertMaynardHutchinsTheHigherLearninginAmerica(YaleUniversityPress,1936).PrefacetothePaperboundEdition(1961)ExternalConditionsTheDilemmasoftheHigherLearningGeneralEducationTheHigherLearningTranscribedintohypertextbyAndrewChrucky,January2000.PrefacetothePaperboundEdhttps://www.docin.com/p-2352788261.html
15.TPmod:ATendencyTPmod: A Tendency-Guided Prediction Model for Temporal Knowledge Graph Completion Computing methodologies Artificial intelligence Knowledge representation and reasoning Reasoning about belief and knowledge Machine learning Machine learning approaches Learning latent representations Recommendations Temporal Knowledge Graphhttps://dl.acm.org/doi/10.1145/3443687
16.[OpenWrtWiki]TPLinkTD00 ~ # switch_utility PortCfgGet 4 Port Id = 4 Port Enable = 1 Unicast Unkown Drop = 0 Multicast Unkown Drop = 0 Reserved Packet Drop = 0 Broadcast Packet Drop = 0 Aging = 0 Learning Mac Port Lock = 0 Learning Limit = 255 Port Monitor = 0 Flow Control = 0 ~ # switch_utilityhttps://openwrt.org/toh/tp-link/td-w8970_v1
17.HomeVideos produced both by YHTP and other organizations. Resource Guides Click for Listings Our resource guides are free to the public. Request a Training View Calendar Request a live training workshop conducted by YHTP staff. Featured A View from the Shadows: Exposing the Minds of Child Sex Offehttps://yhtpshop.org/
18.TP1200屏用户登录精智Comfort屏找答案Comfort面板(TP1200)能否做登录用户名日志? 2个回答 426人关注 博图wincc用户登录的问题 3个回答 797人关注 TIA博途组态的精简触摸屏,如何设置只需输入密码,无需输入用户名即可登录? 1个回答 492人关注 更多 其他回答 官方参考,http://www.ad.siemens.com.cn/service/elearning/course/1533.html WWCWWC 大师https://www.ad.siemens.com.cn/service/answer/solved_206232_1196.html
19.不平衡学习的方法LearningfromImbalancedData正确率和F值的计算都是基于混淆矩阵(Confusion Matrix)的,混淆矩阵如下图7所示,每行代表预测情况,每列代表实际类别,TP,FP,FN,TN分别代表正类正确分类数量,预测为正类但是真实为负类,预测为负类但是真实为正类,负类正确分类数量。 G-Mean G-Mean是另外一个指标,也能评价不平衡数据的模型表现,其计算公式如下。https://cloud.tencent.com/developer/article/1890952
20.飞桨PaddlePaddle自然语言情感分析和文本匹配是日常生活中最常用的两类自然语言处理任务,本节主要介绍情感分析和文本匹配原理实现和典型模型,以及如何使用飞桨完成情感分析任务。 自然语言情感分析 人类自然语言具有高度的复杂性,相同的对话在不同的情景,不同的情感,不同的人演绎,表达的效果往往也会迥然不同。例如"你真的太瘦了",当你https://www.paddlepaddle.org.cn/tutorials/projectdetail/3464735
21.PhaseIThe Microsoft Online Institute (MOLI) offers students easy access right from their desktops to learning materials, instructor expertise, product information, developer articles, user forums, and other resources for Microsoft product and technology information. Courses through MOLI can be accessed on The https://technet.microsoft.com/en-us/library/cc767929.aspx
22.LearningRepresentationforClusteringViaPrototypePrototypes, Scattering, Representation Learning, Task Analysis, Self Supervised Learning, Clustering Methods, Semantics, Contrastive Learning, Deep Clustering, Representation Learning, Self Supervised Learning, Unsupervised Learning Abstract Existing deep clustering methods rely on either contrastive or non-https://www.computer.org/csdl/journal/tp/2023/06/09926200/1HGJ2YhK9QA
23.Home.86 Accidents / million miles Keep moving in the right direction. Interested in learning more about TPJC or being contacted by a salesperson, recruiter or operations manager? Just call or email and we’ll get back to you promptly. location https://tpjcstaffing.com/
24.SLEAP:AdeeplearningsystemformultiThe desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation inhttps://www.nature.com/articles/s41592-022-01426-1
25.TPAbout TP-Link Founded in 1996, TP-Link ranks as the world's No. 1 Wi-Fi products provider for the past 12 years by IDC. The company's Are you interested in learning more about this product? Please fill out your contact info and we will get back to you right away with more detahttps://www.winncom.com/en/manufacturer/tplink
26.2.3.Clustering—scikit2. Unsupervised learning 2.1. Gaussian mixture models 2.2. Manifold learning 2.3. Clustering 2.4. Biclustering 2.5. Decomposing signals in components FMI=TP(TP+FP)(TP+FN) In the above formula: TP (True Positive): The number of pairs of points that are clustered together both in the truehttp://scikit-learn.org/stable/modules/clustering.html
27.TP777Kode Alam Berkelahi 2D3D 4D Menurut Primbon & Erek Erek TP777. 1068 Penilaian. Merek: berkelahi togel. Sgp Senin – Prediksi Togel KSATRIAGAMING - Ksatriagaming Slot -Pasukan Indolottery88- Thelearningnurse.com TP777. Sale Price:IDR 5,000.00 Original Price:IDR 10,000.00. sale. 888SLOT ..https://michaelaraephoto.com/
28.CharacterRenewalDungeonFighterOnlinewill be readjusted, according to these learning level and process updates.Shining Cross UpgradeThis skill will now also increase Shining Cross range when learned. (+10% at Lv. 1) Its learning TP cost will be decreased. (2 → 1) Its Mastery level will be changed. (5 → 7) Its Max https://www.dfoneople.com/news/updates/3258/Character-Changes/Character-Renewal
29.TPLATPLATangible Property Lease Agreement TPLAThe Phoenix Lights Analysis TPLATotal Plant Leaf Area TPLATamil People's Liberation Army TPLATechnological Perspective for Latin America TPLAThe Perfect Learning Algorithm TPLAThird Party Liability Agreement https://www.thefreedictionary.com/TPLA
30.TPTNFPFN超级详细解析技术标签:Machine and Deep Learning机器学习TP、TN、FP、FN 以西瓜数据集为例,我们来详细解释一下什么是TP、TN、FP以及FN。 一、基础概念 TP:被模型预测为正类的正样本 TN:被模型预测为负类的负样本 FP:被模型预测为正类的负样本 FN:被模型预测为负类的正样本 二、通俗理解(以西瓜数据集为例) 以西瓜数据https://www.pianshen.com/article/36902110348/
31.ViewsourceforMeetings/TPAC2016←Meetings/TPAC 2016 You do not have permission to edit this page, for the following reason: The action you have requested is limited to users in one of the groups:Users, 106, 35422-chairs. You can view and copy the source of this page. https://www.w3.org/WAI/GL/wiki/Meetings/TPAC_2016/edit
32.FrontiersAstudyontheblendedlearningeffectsonThe world has gradually entered the post-pandemic era. Although the pandemic has been slowing down, it still has a strong impact on the education scene. Thus, how to provide students with an effective and flexible learning style is currently an important educational issue. This study focused onhttps://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.962707/full
33.HomeWe currently maintain 673 datasets as a service to the machine learning community. Here, you can donate and find datasets used by millions of people all around the world! View DatasetsContribute a Dataset Popular Datasets Iris A small classic dataset from Fisher, 1936. One of the earliest knownhttp://archive.ics.uci.edu/
34.利用增量备份恢复因归档丢失造成的DGgap孙晓东input datafile fno=00186 name=/oradata/JZH/TP_LEARNING01.ORA input datafile fno=00187 name=/oradata/JZH/TP_LEARNING02.ORA input datafile fno=00188 name=/oradata/JZH/TP_LEARNING03.ORA input datafile fno=00191 name=/oradata/JZH/TP_LEARNING06.ORA https://www.cnblogs.com/willsun8023/p/5101399.html