深入解析机器学习核心概念

开通VIP,畅享免费电子书等14项超值服

首页

好书

留言交流

下载APP

联系客服

2021.05.10

刚接触机器学习框架TensorFlow的新手们,这篇由Google官方出品的常用术语词汇表,一定是你必不可少的入门资料!本术语表列出了基本的机器学习术语和TensorFlow专用术语的定义,希望能帮助您快速熟悉TensorFlow入门内容,轻松打开机器学习世界的大门。

A

一种统计方法,用于将两种或多种技术进行比较,通常是将当前采用的技术与新技术进行比较。A/B测试不仅旨在确定哪种技术的效果更好,而且还有助于了解相应差异是否具有显著的统计意义。A/B测试通常是采用一种衡量方式对两种技术进行比较,但也适用于任意有限数量的技术和衡量方式。

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义如下:

在二元分类中,准确率的定义如下:

请参阅正例和负例。

一种函数(例如ReLU或S型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

一种先进的梯度下降法,用于重新调整每个参数的梯度,以便有效地为每个参数指定独立的学习速率。如需查看完整的解释,请参阅这篇论文。

一种会考虑所有可能分类阈值的评估指标。

ROC曲线下面积是,对于随机选择的正类别样本确实为正类别,以及随机选择的负类别样本为正类别,分类器更确信前者的概率。

在神经网络上执行梯度下降法的主要算法。该算法会先按前向传播方式计算(并缓存)每个节点的输出值,然后再按反向传播遍历图的方式计算损失函数值相对于每个参数的偏导数。

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

模型训练的一次迭代(即一次梯度更新)中使用的样本集。

另请参阅批次大小。

一个批次中的样本数。例如,SGD的批次大小为1,而小批次的大小通常介于10到1000之间。批次大小在训练和推断期间通常是固定的;不过,TensorFlow允许使用动态批次大小。

THE END
1.TPVFormer项目常见问题解决方案项目地址: https://gitcode.com/gh_mirrors/tp/TPVFormer 1. 项目基础介绍和主要编程语言 项目名称: TPVFormer 项目简介: TPVFormer 是一个学术研究项目,旨在为自动驾驶领域提供一种替代特斯拉占用网络(Occupancy Network)的解决方案。该项目通过三视角视图(Tri-Perspective View, TPV)来描述3D场景,并使用Transformerhttps://blog.csdn.net/gitblog_00782/article/details/144422637
2.告别离线数据依赖,强化学习微调更高效Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data 【要点】:本文提出了一种新的在线强化学习微调方法Warm-start RL(WSRL),该方法无需保留离线数据即可实现稳定高效的微调,避免了传统方法因离线数据限制导致的性能提升受限。 https://zhuanlan.zhihu.com/p/12183650506
3.FewShotPrompting:基于Transformer的Few这时候,Few-Shot Learning(FSL)技术就派上了用场。FSL旨在通过极少的标注样本快速学习新任务。近年来,随着Transformer架构的普及,基于Transformer的FSL方法受到了广泛关注。其中,Few-Shot Prompting(FSP)是一种基于Prompting的方法,它通过少量示例学习新任务,无需从头开始训练模型。百度智能云千帆大模型平台便提供了丰富的https://developer.baidu.com/article/detail.html?id=2705635
4.FedTP:FederatedLearningbyTransformerPersonalizationFederated learning is an emerging learning paradigm where multiple clients collaboratively train a machine learning model in a privacy-preserving manner. Personalized federated learning extends this paradigm to overcome heterogeneity across clients by learning personalized models. Recently, there have been somehttps://www.ncbi.nlm.nih.gov/pubmed/37220054
5.FedTP:FederatedLearningbyTransformerPersonalizationFedTP: Federated Learning by Transformer Personalization Hongxia Li, Zhongyi Cai, Jingya Wang, Jiangnan Tang, Weiping Ding, Chin-Teng Lin, and Ye Shi 1 Abstract—Federated learning is an emerging learning paradigm where multiple clients collaboratively train a machine learning model in a privacy-http://arxiv.org/pdf/2211.01572
6.训练BlipForConditionalGeneration51CTO博客attention_mask = text_inputs["attention_mask"] # 从零训练用 BlipForConditionalGeneration.from_config() model = BlipForConditionalGeneration.from_pretrained("huggingface.co/Salesforce/blip-image-captioning-base") learning_rate = 5e-5 epochs = 30 https://blog.51cto.com/guotong1988/11945182
7.LearningAcademyTemasekPolytechnicThe Learning Academy (LA) bears testimony to Temasek Polytechnics (TP) commitment to staff capability development. The Academy develops and conducts professional development programmes for TPs staff in areas such as learning-teaching, e-learning and leadhttps://www.tp.edu.sg/research-and-industry/learning-academy.html
8.上海科技大学知识管理系统(KMS):FedTP:FederatedLearningbyFedTP: Federated Learning by Transformer Personalization[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2023,PP(99):1-15. APA Li, Hongxia.,Cai, Zhongyi.,Wang, Jingya.,Tang, Jiangnan.,Ding, Weiping.,&Shi, Ye.(2023).FedTP: Federated Learning by Transformer Personalizationhttps://kms.shanghaitech.edu.cn/handle/2MSLDSTB/312341
9.机器学习术语表:机器学习基础知识MachineLearningGoogleTP 是真正例(正确预测)的数量。 TN 是真负例(正确预测)的数量。 FP 是假正例(错误预测)的数量。 FN 是假负例(错误预测)的数量。 比较准确率与精确率和召回率。 如需了解详情,请参阅机器学习速成课程中的分类:准确率、召回率、精确率和相关指标。 https://developers.google.cn/machine-learning/glossary/fundamentals?hl=ur
10.imagingviadualperspectiveselflearning (TP-SSL), which primarily learns the similarity between adjacent frames and shows excellent denoising performance in calcium imaging [31,32]. The ensuing lightweight 3D network then harnesses this dataset to learn and restore the intricate spatiotemporal relationships inherent within images, https://photonix.springeropen.com/articles/10.1186/s43074-023-00117-0
11.知识库bestincrementalContinual lifelong learning with neural networks: A review(arXiv 2019)[paper] 类别增量学习研究进展和性能评价 (自动化学报 2023)[paper] 2.2 Analysis & Study How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?(NeurIPS 2022)[paper] [WPTP] A Theoretical https://github.com/Vision-Intelligence-and-Robots-Group/Best-Incremental-Learning
12.PythonTP.reset方法代码示例tp.reset()printprint'Learning 2 A->B->C'for_inrange(10):forseqintrainingSet[0:5]: tp.compute(seq, enableLearn =True, computeInfOutput=False) tp.reset()# TP 予測# Learning 1のみだと, A->Aを出力するのみだが,# その後, Learning 2もやると, A->A,Bを出力するようになるhttps://vimsky.com/examples/detail/python-ex-nupic.research.TP-TP-reset-method.html
13.1EdTechLearningToolsInteroperability?BasicLTIv1<file href="BLTI001_Media/learning_icon.gif"/> </resource> 6 Using Learning Information Services with Basic LTI Basic LTI does not provide support for Full LTI run-time services. However, if a Tool Consumer (TC) and Tool Provider (TP) have access to a common set of 1EdTech Learning https://www.imsglobal.org/specs/ltiv1p0/implementation-guide
14.TheHigherLearninginAmerica(高清正版分享)系统标签: learning higher 正版 america paperbound tponed RobertMaynardHutchinsTheHigherLearninginAmerica(YaleUniversityPress,1936).PrefacetothePaperboundEdition(1961)ExternalConditionsTheDilemmasoftheHigherLearningGeneralEducationTheHigherLearningTranscribedintohypertextbyAndrewChrucky,January2000.PrefacetothePaperboundEdhttps://www.docin.com/p-2352788261.html
15.TPmod:ATendencyTPmod: A Tendency-Guided Prediction Model for Temporal Knowledge Graph Completion Computing methodologies Artificial intelligence Knowledge representation and reasoning Reasoning about belief and knowledge Machine learning Machine learning approaches Learning latent representations Recommendations Temporal Knowledge Graphhttps://dl.acm.org/doi/10.1145/3443687
16.[OpenWrtWiki]TPLinkTD00 ~ # switch_utility PortCfgGet 4 Port Id = 4 Port Enable = 1 Unicast Unkown Drop = 0 Multicast Unkown Drop = 0 Reserved Packet Drop = 0 Broadcast Packet Drop = 0 Aging = 0 Learning Mac Port Lock = 0 Learning Limit = 255 Port Monitor = 0 Flow Control = 0 ~ # switch_utilityhttps://openwrt.org/toh/tp-link/td-w8970_v1
17.HomeVideos produced both by YHTP and other organizations. Resource Guides Click for Listings Our resource guides are free to the public. Request a Training View Calendar Request a live training workshop conducted by YHTP staff. Featured A View from the Shadows: Exposing the Minds of Child Sex Offehttps://yhtpshop.org/
18.TP1200屏用户登录精智Comfort屏找答案Comfort面板(TP1200)能否做登录用户名日志? 2个回答 426人关注 博图wincc用户登录的问题 3个回答 797人关注 TIA博途组态的精简触摸屏,如何设置只需输入密码,无需输入用户名即可登录? 1个回答 492人关注 更多 其他回答 官方参考,http://www.ad.siemens.com.cn/service/elearning/course/1533.html WWCWWC 大师https://www.ad.siemens.com.cn/service/answer/solved_206232_1196.html
19.不平衡学习的方法LearningfromImbalancedData正确率和F值的计算都是基于混淆矩阵(Confusion Matrix)的,混淆矩阵如下图7所示,每行代表预测情况,每列代表实际类别,TP,FP,FN,TN分别代表正类正确分类数量,预测为正类但是真实为负类,预测为负类但是真实为正类,负类正确分类数量。 G-Mean G-Mean是另外一个指标,也能评价不平衡数据的模型表现,其计算公式如下。https://cloud.tencent.com/developer/article/1890952
20.飞桨PaddlePaddle自然语言情感分析和文本匹配是日常生活中最常用的两类自然语言处理任务,本节主要介绍情感分析和文本匹配原理实现和典型模型,以及如何使用飞桨完成情感分析任务。 自然语言情感分析 人类自然语言具有高度的复杂性,相同的对话在不同的情景,不同的情感,不同的人演绎,表达的效果往往也会迥然不同。例如"你真的太瘦了",当你https://www.paddlepaddle.org.cn/tutorials/projectdetail/3464735
21.PhaseIThe Microsoft Online Institute (MOLI) offers students easy access right from their desktops to learning materials, instructor expertise, product information, developer articles, user forums, and other resources for Microsoft product and technology information. Courses through MOLI can be accessed on The https://technet.microsoft.com/en-us/library/cc767929.aspx
22.LearningRepresentationforClusteringViaPrototypePrototypes, Scattering, Representation Learning, Task Analysis, Self Supervised Learning, Clustering Methods, Semantics, Contrastive Learning, Deep Clustering, Representation Learning, Self Supervised Learning, Unsupervised Learning Abstract Existing deep clustering methods rely on either contrastive or non-https://www.computer.org/csdl/journal/tp/2023/06/09926200/1HGJ2YhK9QA
23.Home.86 Accidents / million miles Keep moving in the right direction. Interested in learning more about TPJC or being contacted by a salesperson, recruiter or operations manager? Just call or email and we’ll get back to you promptly. location https://tpjcstaffing.com/
24.SLEAP:AdeeplearningsystemformultiThe desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation inhttps://www.nature.com/articles/s41592-022-01426-1
25.TPAbout TP-Link Founded in 1996, TP-Link ranks as the world's No. 1 Wi-Fi products provider for the past 12 years by IDC. The company's Are you interested in learning more about this product? Please fill out your contact info and we will get back to you right away with more detahttps://www.winncom.com/en/manufacturer/tplink
26.2.3.Clustering—scikit2. Unsupervised learning 2.1. Gaussian mixture models 2.2. Manifold learning 2.3. Clustering 2.4. Biclustering 2.5. Decomposing signals in components FMI=TP(TP+FP)(TP+FN) In the above formula: TP (True Positive): The number of pairs of points that are clustered together both in the truehttp://scikit-learn.org/stable/modules/clustering.html
27.TP777Kode Alam Berkelahi 2D3D 4D Menurut Primbon & Erek Erek TP777. 1068 Penilaian. Merek: berkelahi togel. Sgp Senin – Prediksi Togel KSATRIAGAMING - Ksatriagaming Slot -Pasukan Indolottery88- Thelearningnurse.com TP777. Sale Price:IDR 5,000.00 Original Price:IDR 10,000.00. sale. 888SLOT ..https://michaelaraephoto.com/
28.CharacterRenewalDungeonFighterOnlinewill be readjusted, according to these learning level and process updates.Shining Cross UpgradeThis skill will now also increase Shining Cross range when learned. (+10% at Lv. 1) Its learning TP cost will be decreased. (2 → 1) Its Mastery level will be changed. (5 → 7) Its Max https://www.dfoneople.com/news/updates/3258/Character-Changes/Character-Renewal
29.TPLATPLATangible Property Lease Agreement TPLAThe Phoenix Lights Analysis TPLATotal Plant Leaf Area TPLATamil People's Liberation Army TPLATechnological Perspective for Latin America TPLAThe Perfect Learning Algorithm TPLAThird Party Liability Agreement https://www.thefreedictionary.com/TPLA
30.TPTNFPFN超级详细解析技术标签:Machine and Deep Learning机器学习TP、TN、FP、FN 以西瓜数据集为例,我们来详细解释一下什么是TP、TN、FP以及FN。 一、基础概念 TP:被模型预测为正类的正样本 TN:被模型预测为负类的负样本 FP:被模型预测为正类的负样本 FN:被模型预测为负类的正样本 二、通俗理解(以西瓜数据集为例) 以西瓜数据https://www.pianshen.com/article/36902110348/
31.ViewsourceforMeetings/TPAC2016←Meetings/TPAC 2016 You do not have permission to edit this page, for the following reason: The action you have requested is limited to users in one of the groups:Users, 106, 35422-chairs. You can view and copy the source of this page. https://www.w3.org/WAI/GL/wiki/Meetings/TPAC_2016/edit
32.FrontiersAstudyontheblendedlearningeffectsonThe world has gradually entered the post-pandemic era. Although the pandemic has been slowing down, it still has a strong impact on the education scene. Thus, how to provide students with an effective and flexible learning style is currently an important educational issue. This study focused onhttps://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.962707/full
33.HomeWe currently maintain 673 datasets as a service to the machine learning community. Here, you can donate and find datasets used by millions of people all around the world! View DatasetsContribute a Dataset Popular Datasets Iris A small classic dataset from Fisher, 1936. One of the earliest knownhttp://archive.ics.uci.edu/
34.利用增量备份恢复因归档丢失造成的DGgap孙晓东input datafile fno=00186 name=/oradata/JZH/TP_LEARNING01.ORA input datafile fno=00187 name=/oradata/JZH/TP_LEARNING02.ORA input datafile fno=00188 name=/oradata/JZH/TP_LEARNING03.ORA input datafile fno=00191 name=/oradata/JZH/TP_LEARNING06.ORA https://www.cnblogs.com/willsun8023/p/5101399.html