基于历史的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。
MBR中有两个主要的要素,分别为距离函数(distancefunction)与结合函数(combinationfunction)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。
另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。
此外记忆基础推理法在处理上亦较为费时,不易发现优异的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。
举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计吸引客户的商业套餐等等。
决策树(DecisionTrees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。
典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。
聚类分析(ClusterDetection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。
它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。
连接分析(LinkAnalysis)是以数学中之图形理论(graphtheory)为基础,藉由记录之间的关系发展出一个模式,它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。
延伸阅读:
不论何种类型的人工神经网络,它们共同的特点是,大规模并行处理,分布式存储,弹性拓扑,高度冗余和非线性运算。因而具有很髙的运算速度,很强的联想能力,很强的适应性,很强的容错能力和自组织能力。这些特点和能力构成了人工神经网络模拟智能活动的技术基础,并在广阔的领域获得了重要的应用。例如,在通信领域,人工神经网络可以用于数据压缩、图像处理、矢量编码、差错控制(纠错和检错编码)、自适应信号处理、自适应均衡、信号检测、模式识别、ATM流量控制、路由选择、通信网优化和智能网管理等等。