今日学习常见十种机器学习算法详解

|“没有最好的算法,只有最合适的算法。”

机器学习算法大致分类

常见的的十种机器学习算法

01回归算法

回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。

常见的回归算法包括:最小二乘法(OrdinaryLeastsquare),线性回归(LinearRegression),逻辑回归(LogisticRegression),逐步式回归(StepwiseRegression),多元自适应回归样条(MultivariateAdaptiveRegressionSplines)以及本地散点平滑估计(LocallyEstimatedScatterplotSmoothing)。

优点:直接、快速,知名度高

缺点:要求严格的假设需要处理异常值

02基于实例的算法

基于实例的算法常常用来对决策问题建立模型,先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。

常见的算法包括k-NearestNeighbor(KNN),学习矢量量化(LearningVectorQuantization,LVQ),以及自组织映射算法(Self-OrganizingMap,SOM)。

优点:

1)简单、有效。

2)重新训练的代价较低(类别体系的变化和训练集的变化,在Web环境和电子商务应用中是很常见的)。

缺点:

1)当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。

2)对数据的局部结构比较敏感。如果查询点是位于训练集较密集的区域,那预测相对比其他稀疏集来说更准确。

3)维数灾难:临近距离可能被不相干属性主导(因此特征选择问题)

03决策树学习

决策树算法根据数据的属性采用树状结构建立决策模型,决策树模型常常用来解决分类和回归问题。

常见的算法包括:分类及回归树(ClassificationAndRegressionTree,CART),ID3(IterativeDichotomiser3),C4.5,Chi-squaredAutomaticInteractionDetection(CHAID),DecisionStump,随机森林(RandomForest),多元自适应回归样条(MARS)以及梯度推进机(GradientBoostingMachine,GBM)。

优点:容易解释,非参数型

缺点:趋向过拟合;可能或陷于局部最小值中;没有在线学习

04贝叶斯算法

贝叶斯算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-DependenceEstimators,AODE),以及BayesianBeliefNetwork(BBN)。

朴素贝叶斯算法应用非常广泛,从文本分类、垃圾邮件过滤器、医疗诊断等等。朴素贝叶斯适用于特征之间的相互独立的场景,例如利用花瓣的长度和宽度来预测花的类型。“朴素”。的内涵可以理解为特征和特征之间独立性强。

优点:快速、易于训练、给出了它们所需的资源能带来良好的表现

05基于核的算法

基于核的算法中最著名的莫过于支持向量机(SVM)了。基于核的算法把输入数据映射到一个高阶的向量空间,在这些高阶向量空间里,有些分类或者回归问题能够更容易的解决。

常见的基于核的算法包括:持向量机(SupportVectorMachine,SVM),径向基函数(RadialBasisFunction,RBF),以及线性判别分析(LinearDiscriminateAnalysis,LDA)等。

优点:在非线性可分问题上表现优秀

缺点:非常难以训练;很难解释

06聚类算法

聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。

常见的聚类算法包括k-Means算法以及期望最大化算法(ExpectationMaximization,EM)。

优点:让数据变得有意义

缺点:结果难以解读,针对不寻常的数据组,结果可能无用。

07降维算法

像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。

常见的算法包括:主成份分析(PrincipleComponentAnalysis,PCA),偏最小二乘回归(PartialLeastsquareRegression,PLS),Sammon映射,多维尺度(Multi-DimensionalScaling,MDS),投影追踪(ProjectionPursuit)等。

优点:可处理大规模数据集;无需在数据上进行假设

缺点:难以搞定非线性数据;难以理解结果的意义

08关联规则学习

关联规则学习方法能够提取出对数据中的变量之间的关系的最佳解释。比如说一家超市的销售数据中存在规则{洋葱,土豆}=>{汉堡},那说明当一位客户同时购买了洋葱和土豆的时候,他很有可能还会购买汉堡肉。

常见算法包括Apriori算法和Eclat算法等。

09集成算法

集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。

常见的算法包括:Boosting,BootstrappedAggregation(Bagging),AdaBoost,堆叠泛化(StackedGeneralization,Blending),梯度推进机(GradientBoostingMachine,GBM),随机森林(RandomForest)。

优点:当先最先进的预测几乎都使用了算法集成。它比使用单个模型预测出来的结果要精确的多。

缺点:需要大量的维护工作。

10人工神经网络

人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。

人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法,(其中深度学习就是其中的一类算法),重要的人工神经网络算法包括:感知器神经网络(PerceptronNeuralNetwork),反向传递(BackPropagation),Hopfield网络,自组织映射(Self-OrganizingMap,SOM)学习矢量量化(LearningVectorQuantization,LVQ)。

THE END
1.深度学习常见算法的介绍和比较深度学习算法很多人都有误解,以为深度学习比机器学习先进。其实深度学习是机器学习的一个分支。可以理解为具有多层结构的模型。具体的话,深度学习是机器学习中的具有深层结构的神经网络算法,即机器学习>神经网络算法>深度神经网络(深度学习)。 关于深度学习的理论推导,太大太复杂,一些常见的深度学习算法本人也是模模糊糊的,看过好多https://blog.csdn.net/abc200941410128/article/details/79269386
2.神经网络回归模型有哪些神经网络是回归算法吗人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 https://blog.51cto.com/u_16099346/7922482
3.什么是神经网络算法,神经网络算法的知识介绍神经网络算法(Neural Network Algorithm)是一种模拟人类大脑神经元活动的计算机技术,由一系列节点(或称为神经元)通过信号传递而连接起来。这些节点可接受输入数据,并根据一定的规则自动调整数据权重,从而输出结果预测。 1.神经网络算法有哪些 常见的神经网络算法包括: https://www.eefocus.com/baike/1339560.html
4.智能优化算法有哪些智能优化算法有:遗传算法、神经网络优化算法、粒子群优化算法、模拟退火算法等。1. 遗传算法:这是一种基于生物进化理论的搜索算法。它通过模拟自然选择和遗传机制,在解空间中进行高效搜索。遗传算法尤其擅长处理复杂的非线性问题,通过选择、交叉和变异等操作,逐步找到最优解或近似最优解。2. 神经网络https://zhidao.baidu.com/question/211450621965277805.html
5.神经网络有哪些快速增量学习算法?神经网络有哪些快速增量学习算法? 神经网络的快速增量学习算法是一种可以在不需要重新训练整个网络的情况下对其进行修改和更新的技术。这些算法对于处理实时数据和动态环境非常有用,并且可以大大降低计算成本和时间。以下是几种流行的神经网络快速增量学习算法:https://www.cda.cn/bigdata/201736.html
6.的数模竞赛算法模型有哪些?聚类拟合插值神经网络视频生成模型你心目中TOP10的数模竞赛算法模型有哪些? 为了帮助同学们更好的准备接下来的各类数模竞赛,今天数乐君给大家整理了数模竞赛中常用的三大模型及十大常用算法,赶快码住!用起来吧~ 三大模型 1.预测模型 神经网络预测、灰色预测、拟合插值预测(线性回归)、时间序列预测、马尔科夫链预测、微分方程预测、Logistic模型等等。https://www.163.com/dy/article/ISMLFL4605530N05.html
7.深度学习中5种常见的网络类型神经网络可以有效地求解分类问题,它有助于根据示例输入之间的相似性对未标记的数据进行分组。神经网络提取数据的复杂特征,可以将深层神经网络作为涉及强化学习、分类和回归算法的较大机器学习应用的重要组件。 截至目前,学术界已经提出了各种各样的神经网络模型,例如感知器、前馈型神经网络、卷积神经网络、循环神经网络、组https://zhuanlan.zhihu.com/p/38957729
8.第五章深度学习与神经网络基础*1、深度学习算法可以分为监督学习和非监督学习两类。() 正确 错误 *2、自编码器是非监督学习类算法。() 正确 错误 *3、深度学习不同于机器学习,没有非监督类算法。() 正确 错误 *4、循环神经网络更适合于处理图像识别问题。() 正确 错误 *5、循环神经网络更适合于处理语音识别问题。() https://www.wjx.cn/jq/87327809.aspx
9.可逆神经网络(InvertibleNeuralNetworks)详细解析:让神经网络更接下来我将先从可逆神经网络讲起,然后是神经网络的反向传播,最后是标准残差网络。对反向传播算法和标准残差网络比较熟悉的小伙伴,可以只看第一节:可逆神经网络。如果各位小伙伴不熟悉反向传播算法和标准残差网络,建议先看第二节:反向传播(BP)算法和第三节:残差网络(Residual Network)。本文1.2和1.3.4摘录自@阿亮。https://weibo.com/ttarticle/p/show?id=2309634768790608216471
10.深度神经网络图像目标检测算法综述深度神经网络的目标检测算法主要有两种类型, 即两阶段检测和单阶段检测, 这主要取决于是否存在候选框生成过程. 两阶段目标检测算法先使用多个固定大小的滑动窗口方法扫描整个图像, 产生一系列的候选框, 这个候选框集合同时筛选并消除掉大部分负样本集合, 然后对这些候选区域进行二次修正回归得到最终检测结果, 检测准确度https://c-s-a.org.cn/html/2022/7/8595.html
11.学习笔记:神经网络学习算法腾讯云开发者社区主流的神经网络学习算法(或者说学习方式)可分为三大类:有监督学习(SupervisedLearning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning),如下图所示。 注:有监督学习、无监督学习和强化学习并不是某一种特定的算法,而是一类算法的统称。 https://cloud.tencent.com/developer/article/1610502
12.2024年最值得关注的10大深度学习算法大家好,我是Peter~今天给这篇文章介绍了 2024 年值得关注的 10 大深度学习算法,包括传统机器学习和深度学习训练过程的差异,以及神经网络的基本结构。详细阐述了 10 种算法如多层感知机、径向基函数网络、卷积神经网络等的定义、工作原理、网络结构确定等内容,帮助读者深入了解深度学习算法。 https://juejin.cn/post/7392848248489312271
13.BAT机器学习面试1000题系列(二)如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。 正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意https://www.jianshu.com/p/4a7f7127eef1