7种最著名的人脸识别算法,你知道几个?这些算法执行三个主要任务:检测图像视频或实时流中的人脸;计算人脸的数学模型;将模

人工神经网络是图像识别中最流行和最成功的方法。人脸识别算法基于数学计算,神经网络同时执行大量数学运算。

这些算法执行三个主要任务:检测图像、视频或实时流中的人脸;计算人脸的数学模型;将模型与训练集或数据库进行比较以识别或验证一个人。

本文涵盖了最著名的人脸识别算法和关键特征。由于每种方法都有其特定任务的优势,研究人员积极尝试组合方法和开发新技术。

卷积神经网络(CNN)

卷积神经网络(CNN)是人工神经网络(ANN)和人工智能发展的突破之一。它是深度学习中最流行的算法之一,深度学习是一种机器学习,模型学习直接对图像、视频、文本或声音执行分类任务。该模型在多个领域显示出令人印象深刻的结果:计算机视觉、自然语言处理(NLP)和最大的图像分类数据集(ImageNet)。CNN是一个普通的神经网络,带有新的层——卷积层和池化层。CNN可以有几十个和几百个这样的层,每个层都学会检测不同的成像特征。

特征脸

Eigenfaces是一种人脸检测和识别方法,用于确定图像数据集中的人脸方差。它使用这些差异通过机器学习对人脸进行编码和解码。一组特征脸是通过对大量人脸图像的统计分析确定的“标准化人脸成分”的集合。面部特征被分配了数学值,因为这种方法不使用数字图片,而是使用统计数据库。任何人脸都是这些值以不同百分比的组合。

Fisherfaces

Fisherfaces是最流行的面部识别算法之一;它被认为优于它的许多替代品。作为Eeigenfaces算法的改进,它经常与Eigenfaces进行比较,并被认为在训练过程中的类别区分方面更成功。该算法的主要优势在于它能够对光照和面部表情变化进行内插和外推。有报告称,在预处理阶段与PCA方法结合时,Fisherfaces算法的准确度为93%。

内核方法:PCA和SVM

支持向量机(SVM)是一种机器学习算法,它使用两组分类原则来区分人脸和“非人脸”。对于每个类别,SVM模型都会接收一个标记的训练数据集来对新的测试数据进行分类。研究人员将线性和非线性SVM训练模型应用于人脸识别。最近的结果表明,非线性训练机具有更大的余量和更好的识别和分类结果。

HaarCascade

HaarCascade是一种用于在图像上定位对象的对象检测方法。该算法从大量正样本和负样本中学习——前者包含感兴趣的对象,而后者包含除您要查找的对象之外的任何内容。训练后,分类器可以在新图像上找到感兴趣的对象。该方法结合局部二值模式算法进行人脸识别,用于刑事鉴定。Haar级联分类器使用200个(共6000个)特征,即使表情变化也能确保85-95%的识别率。

三维识别

3D人脸识别技术的基本思想是人类头骨的独特结构。每个人的头骨结构都是独一无二的,可以用几十个参数来描述。这种面部识别方法基于将3D面部扫描与数据库模式进行比较。它有一个重要的优势——化妆、面部毛发、眼镜和类似因素不会影响检测和识别过程。最新研究使用了将3D几何信息映射到规则2D网格上的技术。它允许将3D数据的描述性与2D数据的计算效率相结合,并显示出FRGCv2(人脸识别大挑战3D面部数据库)报告的最高性能。

皮肤纹理分析

皮肤识别技术有很多应用——人脸检测算法、不良图像过滤、手势分析等。它通常使用高分辨率图像。皮肤纹理分析的特殊情况使用不同的独特参数,如痣、肤色、肤色等。最近基于纹理特征和肤色组合的研究显示了有趣的结果。研究人员使用神经网络来开发和测试皮肤识别系统。项目中使用的前馈神经网络将输入纹理图像分类为“皮肤”和“非皮肤”,并表现出令人印象深刻的性能。

热像仪

热像仪是一种用于监测被检表面温度分布的设备。温度分布以不同颜色对应温度的彩色图片显示。该技术已经有几个适应全球变化的实际应用——基于智能手机的免疫证书、远程发烧检测和热面部识别。热像仪人脸识别模型基于人脸的独特温度模式。人类一致的温度“特征”是用热红外(IR)虚部测量的。在人脸识别中使用热敏方法有一个不可否认的好处——化妆、胡须、帽子和眼镜不会影响其准确性。此外,它可以区分双胞胎兄弟姐妹。

ANFIS

自适应神经模糊干扰系统(ANFIS)是一种人工神经网络。该方法将神经网络原理与模糊逻辑原理相结合,将它们的优点结合在一个单一的结构中。ANFIS用于在预处理阶段对从数据集中提取的图像特征进行分类。数据科学家将这种方法与各种特征提取算法相结合。因此,一些研究报告称,在使用二维主成分分析进行特征提取后,ANFIS分类准确度达到了令人难以置信的97.1%。

局部二元模式直方图(LBPH)

该方法使用局部二进制模式(LBP),这是计算机视觉中一种简单有效的纹理算子,它通过设置每个像素的邻域阈值并将结果视为二进制数来标记图像中的像素。在学习阶段,LBPH算法为每个标记和分类的图像创建直方图。每个直方图代表训练集中的每个图像。这样,实际的识别过程意味着比较任意两幅图像的直方图。

FaceNet

Google研究人员于2015年开发的人脸识别系统FaceNet基于人脸识别基准数据集。可用的预训练模型和各种开源第三方实现使该系统非常广泛。与早期开发的其他算法相比,FaceNet在研究调查、测试性能和准确性方面显示出出色的结果。FaceNet准确提取人脸嵌入,高质量特征用于后期训练人脸识别系统。

NEC

旷视(FACE++)

旷视算法基于图像检测和模糊图像搜索技术。该技术解决方案使用该公司基于大数据构建的专有深度学习框架MegEngine。该公司的技术成功地进行了人脸信息提取,包括几个关键功能:人脸和人体检测和跟踪、人脸识别和聚类、关键点检测、人脸属性估计和人脸搜索引擎。

面部识别:结合不同的技术

每种面部识别技术都有其有效的特点。然而,最近的研究证明,最好的结果是通过不同算法和方法的组合来实现的。这些组合旨在解决面部识别过程中的许多常规问题——面部表情、姿势、光照条件、图像噪声等方面的差异。最新的实验将LBP算法与先进的图像处理技术相结合:双边滤波、直方图均衡、对比度调整、和图像混合。这样的技术显示了对LBP代码的显着改进,并且对于进一步研究看起来非常有希望。

有多种人脸识别算法和方法。尽管它们都有一个主要目标,但它们可以是针对特定任务和问题的。根据使用目的和实施情况,它们的范围从神经网络和数学模型到私营公司的技术解决方案。

本文涵盖了最广泛的算法和方法。然而,更多的研究和科学实验表明,在面部识别过程中结合不同的算法以获得更好的结果是不可否认的好处。它导致新技术和特定用途方法的出现。

人脸检测算法是如何工作的?

通常,训练特定的神经网络来检测人脸地标并将人脸与图像中的其他对象区分开来。地标是通用的人类面部特征,如眼睛、鼻子、嘴巴、眉毛等。实际实现的方式因算法而异。

什么是人脸识别算法?

人脸识别算法是一种建立生物特征人脸模型以供进一步分析和人脸识别过程的方法。

如何在OpenCV中进行人脸检测?

开源计算机视觉库(OpenCV)是一个流行的计算机视觉算法、图像处理和数值开源通用算法库。使用OpenCV,可以分三步进行人脸识别过程:

如何训练人脸识别算法?

在面部识别算法准备好执行必要的任务之前,它们需要处理大量数据——精确标记的图像集。这些集合用于开发机器学习模型。

人脸识别技术是一种高精度、易于使用、稳定性高、难仿冒的生物识别技术,具有极其广阔的市场应用前景。在公安、国防、海关、交通、金融、社保、医疗及其他民用安全控制等行业和部门存在着广泛的需求。

我们TSINGSEE青犀视频的研发人员近期也在积极开发人脸检测、人脸识别、人流量统计、安全帽检测等AI技术,并积极融入到现有的视频平台中。典型的示例如EasyCVR视频融合云服务,具有AI人脸识别、车牌识别、语音对讲、云台控制、声光告警、监控视频分析与数据汇总的能力,广泛应用在小区、楼宇的智能门禁,周界可疑人员徘徊检测、景区人流量统计等场景中。

THE END
1.视觉识别算法介绍如何实现视觉识别视觉识别算法介绍 本文介绍了视觉识别算法在计算机视觉中的重要性,包括图像预处理、特征提取、匹配和识别等步骤,以及常见的边缘检测、目标检测和物体识别算法。此外,还探讨了这些技术在人脸识别、图像搜索、自动驾驶和医学影像识别等领域的应用。 摘要由CSDN通过智能技术生成https://blog.csdn.net/m0_72410588/article/details/131885622
2.封面人物沈春华:做简单高效的人工智能算法,让机器“看”得更清楚让视觉识别更加灵敏 给机器一张图片或者一段视频,如何把目标信息找出来?现在常用的是基于锚定框(anchorbox)的目标检测算法,预先设计好不同的模板,让算法在经过“训练”之后利用最匹配的模板检测并识别出目标。 “业界之前普遍认为,去掉锚定框会大大降低识别效果。缺点是算法设计比较复杂,锚定框数量非常多,比如小汽车https://www.zju.edu.cn/2022/0723/c41533a2605540/page.htm
3.虹软视觉开放平台—以免费人脸识别技术为核心的人脸识别算法开放虹软视觉开放平台基于专业的人脸识别算法,为用户免费提供人脸识别技术为支撑的人脸检测、人脸比对、人脸追踪、活体检测、人证比对等产品。提供人脸识别门禁、人脸识别考勤等产品解决方案,致力于为创业团队提供人脸识别技术赋能。https://www.arcsoft.com.cn/ai/sdk
4.视觉识别现代物体检测算法的基础是深度学习,常见的物体检测算法有RCNN、Fast RCNN、Faster RCNN、YOLO、SSD等。其中,YOLO和SSD是速度较快且适合实时场景的算法,而Faster RCNN则是当前目标检测效果最好的算法之一。 物体检测的应用场景非常广泛,如智能安防、自动驾驶、工业生产等。 场景分析 编辑本段 视觉识别是一种基于图https://vebaike.com/doc-view-942.html
5.从单幅图像到双目立体视觉的3D目标检测算法机器之心从单幅图像到双目立体视觉的3D目标检测算法 一.导言 经典的计算机视觉问题是通过数学模型或者统计学习识别图像中的物体、场景,继而实现视频时序序列上的运动识别、物体轨迹追踪、行为识别等等。然而,由于图像是三维空间在光学系统的投影,仅仅实现图像层次的识别是不够的,这在无人驾驶系统、3604f85d04>增强现实技术等领域https://www.jiqizhixin.com/articles/2019-08-01-13
6.改进YOLOv5s的交通标志识别算法改进YOLOv5s的交通标志识别算法 摘要:为了准确且实时地检测到交通标志指示牌, 减少交通事故的发生和推动智慧交通的发展, 针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题, 设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC. 首先, 使用copy-paste进行数据增强后再送入网络https://c-s-a.org.cn/html/2022/12/8859.html
7.机器视觉方向最常用的21种算法机器视觉视觉检测设备机器视觉是一门前沿而又引人入胜的领域,它的应用涵盖了各个行业。在这个领域中,有许多算法被广泛应用,它们帮助我们实现了从图像识别到目标追踪的各种任务。本文将为大家介绍机器视觉方向最常用的21种算法,让我们一起来探索这个神奇的世界吧! 1、机器视觉方向最常用的21种算法 https://www.0755vc.com/15710.html
8.基于高斯混合基于高斯混合-隐马尔科夫融合算法识别奶牛步态时相[J]. 智慧农业(中英文), 2022, 4(2): 53-63. doi:10.12133/j.smartag.SA202204003 ZHANG Kai, HAN Shuqing, CHENG Guodong, WU Saisai, LIU Jifang. Gait Phase Recognition of Dairy Cows based on Gaussian Mixture Model and Hidden Markov Model[J]https://www.smartag.net.cn/article/2022/2096-8094/2096-8094-2022-4-2-53.shtml
9.自动驾驶之感知算法3.使用深度学习识别灯颜色的变化(分为检测和颜色分类两步) 一条道路上有很多红绿灯,检测算法会把所有的灯都检测出来,地图会告知需要看几个灯,但是并不知道看哪几个灯。因此需要把对应关系匹配起来,需要做3D到2D的投影,投影又受到标定、定位、同步、地图等因素的影响,需要综合考虑 https://www.jianshu.com/p/bd61b7400cda
10.AI综述专栏图像物体分类与检测算法综述腾讯云开发者社区实例层次: 针对单个物体实例而言,通常由于图像采集过程中光照条件、拍摄视角、距离的不同,物体自身的非刚体形变以及其他物体的部分遮挡使得物体实例的表观特征产生很大的变化,给视觉识别算法带来了极大的困难。 类别层次: 困难与挑战通常来自三个方面,首先是类内差大,也即属于同一类的物体表观特征差别比较大,其原因有https://www.cloud.tencent.com/developer/article/1628228