数据化运营是一种通过收集、处理、分析数据,从而发现用户偏好、优化产品服务、提高用户体验和提升企业运营效率的运营方式。
下面是一些数据化运营的思路和分析方法:
1.数据收集:收集用户的行为数据、用户属性数据、产品使用数据等,方法包括埋点技术、用户调研、问卷调查等。
2.数据处理:通过数据清洗、数据分类、数据分析等方法,提取有价值的信息,用于后续决策。
3.数据分析:利用数据分析工具对收集的数据进行分析,得到业务发展趋势、用户偏好、痛点等信息。
4.用户画像:通过对用户行为和属性数据的分析,建立用户画像,找到不同用户群体的共性和差异性,为精细化运营提供依据。
5.个性化推荐:基于用户画像和历史数据,进行个性化推荐,提供更准确、更符合用户需求的服务。
6.A/B测试:通过A/B测试方法,对不同策略进行比较,找到更优的运营方式。
7.数据可视化:通过数据可视化的方式,将分析结果直观、简洁地呈现,便于决策者进行分析和决策。
通过数据化运营,企业能够更好地理解用户需求,提升产品和服务质量,提高用户体验,同时也能够更高效地运营企业,提高效率和收益。
1.防止欺诈
可以采用社交媒体来分析索赔者是否有可能实施欺诈行为。使用预测建模有助于保险代理确定是否拒绝其索赔申请。同样,保险公司可以使用大数据分析服务在支付高额费用之前处理索赔,并通过索赔数据是否存在欺诈行为。例如,索赔者可能在打开车窗之后报警,声称汽车中的物品被盗,其证词可能会被记录以供调查。
2.潜在风险评估
数据分析非常适合进行详细的风险评估。大数据分析应用程序可以在保险政策发布之前确定每个申请者所面临的风险。由于大数据服务产品的功能,保险公司可以下载警方提供的犯罪记录以及社交媒体信息。在采用大数据技术之前,这种数据存储量是无法想象的。
例如投保者并没有犯罪记录,并且想要购买新车保险。在这个案例中可以通过风险评估检查,其中包括汽车的品牌、客户的年龄,以及是否有犯罪记录。
借助大数据分析即服务,保险公司可以获得比以往更多的信息。因此,考虑到了诸如该地区的犯罪率和事故数量及其乘车体验之类的细节。在审批保险单之前,要对风险进行评估,并相应地对保险费用进行估价。
3.简化内部流程
采用有效的大数据分析平台可以简化内部流程。这包括以下方面:
客户反馈评估;
检查保险单的销售情况;
评估客户对销售技巧的反应;
评估促销的有效性;
确定哪些保单的索赔额最高。
这些只是随着大数据分析能力的提高而改善的一些情况。
大量的数据可以即时处理,数据分析有助于保险公司管理人员检查其业务中表现良好的领域和其他需要改进的领域的能力。这允许向销售保险产品的员工提供更有意义的反馈,并帮助他们遵守保险产品的统计要求。
4.个性化政策产品
保险行业主要以客户为中心。这意味着其保险政策必须个性化,并根据每个客户的偏好进行调整。客户希望保险代理成为他们值得信赖的顾问,可以帮助他们获得最优惠的折扣。大数据咨询公司或内部资源设计了可以实现灵活客户体验的算法,使这种想法成为可能。数据分析算法有助于保留客户,并预测哪些计划将使哪些客户受益
在当今竞争激烈的市场环境中,数据分析与运营已成为企业成功的关键因素之一。数据分析可以帮助企业了解市场需求,优化产品和服务,提高客户满意度,从而实现可持续增长。运营则是指通过各种手段,确保企业各项业务能够顺利运行,包括生产、销售、物流、售后服务等。通过数据分析与运营的结合,企业可以更好地了解市场趋势,制定更有效的战略,提高企业的竞争力和盈利能力。
数据分析的方法有很多种,包括数据收集、数据清洗、数据可视化、数据挖掘等。数据收集是指从各种渠道收集数据,包括市场调查、用户反馈、社交媒体等。数据清洗是指将收集到的数据进行整理和标准化,以便更好地进行分析。数据可视化是指将数据以图表、图形等方式呈现出来,以便更好地理解和分析数据。数据挖掘是指从大量数据中提取有用的信息和知识,以便更好地指导企业的决策和运营。
综上所述,数据分析与运营在当今企业中具有重要意义。通过掌握正确的方法和技巧,企业可以更好地了解市场趋势,制定更有效的战略,提高企业的竞争力和盈利能力。因此,企业应该重视数据分析与运营的实践,不断探索和创新,以适应不断变化的市场环境。
1.日流量报表它统计的是网站每天的访问量(uv),页面的浏览量(pv),跳出率反应的是网站的用户体验情况。根据这些参数的对比,可以发现网站的整体运营情况,以及需要改进的地方。
2.询盘跟进表它统计的是用户询盘的情况,以及转化成交的数量。通过这个统计数据,可以查看到网站优化的实际效果,也方便查看意向客户跟踪进度。
3.关键词流量数据表它统计的是每个关键词所带来的流量,通过数据分析,可以挑选出潜力大的关键词,以及剔除无法带来流量的关键词和优化成本较高的词。
4.外链建设记录表它记录了外链建设的数目,以及每条外链的收录情况
这两个岗位的差别主要有两处,分别是服务的对象不同,和对所需数据的分析和处理方式不同。
下文会详细说说这两处不同的具体表现形式,以及这两个岗位值得注意的相同点。
数据分析(产品方向)岗位做所的工作,可能80%是围绕着产品展开的,20%是围绕着数据分析技术展开的,它本质上是一个产品工作,它所服务的对象更多是产品内部,是为产品功能服务的。
最典型的例子就是互联网公司常用的各种高大上酷炫的数据看板,以及目前沿海城市相对比较普及的智慧城市大脑,本质上也是一个数据分析(产品方向)的工作成果。
如下图展示的就是北京朝阳区的智慧城市大脑工作图,它的本质就是一个深度应用数据分析功能的,用于提升城市现代化治理能力和城市竞争力的新型基础设施产品。
我们以618大促作为例子:
数据分析(产品方向)岗位员工的工作强度和工作重点更多会在前期的筹备和设计阶段:
他们需要考虑,后台的数据看板需要展示哪些数据,例如日销售额、日成单量、日退单量、单日利润分析、投放引流数据等维度的数据是放在一级、二级还是三级界面展示?不同的部门数据看板的数据权限如何?
等大促真的开始之后,他们的工作反而告一段落,只需要保障自己的产品稳定运行,不会被暴起的流量冲垮崩溃就行。
数据分析(运营方向)岗位员工的工作强度则会在大促即将开始的时候加码,在大促开始之后来到顶峰:
比如,大促前的拉新促活活动效果怎么样?目前发放的优惠券和满减政策,导致了多少主推商品被加入到购物车?网页内各项商品的点击量和收藏量如何?
这里能够看到,不管是产品方向还是运营方向的岗位,想要做精,都离不开数据分析的技术功底做支撑。
这两个岗位都需要深入了解业务流程、熟练掌握数据分析工具的应用、有较高的数据敏感度,并能针对数据分析结果提供针对性的合理化建议(面向产品或面向营销)。
业务流程可以通过自学掌握;数据敏感度可以通过工作积累和刻意练习来培养;
但数据分析能力是需要通过系统性的学习才能有比较好的效果。
这一块的专业教学,推荐知乎知学堂官方的数据分析实战课程,可以先用1毛钱的价格实际感受和体验一下课程的质量,觉得对自己工作有帮助有启发再正式购买:
数据分析(产品方向)岗位的本质是打造产品,是为产品的功能服务的,且做的产品更多是围绕数据看板、数据平台等数据型的产品展开的。
数据分析(运营方向)岗位的本质是运营,是为市场和销售策略服务的。
这两个岗位虽然前期工作内容不同,往上晋升之路却殊途同归,都会是同一个岗位——数据分析师。
相较数据运营更加侧重于前端市场,数据产品更加侧重于后台研发,数据分析师是介于连接业务和技术之间的职位。
它得是运营人才里最懂产品的,产品人才里最懂运营的。
数据分析师的工作会涉及到大量的数据提取,数据清洗和数据多维度分析等工作,还需要根据数据的趋势预测给出产品、运营乃至公司战略上的策略建议。
从各方面评估,这都将是个高薪、高压、高挑战和高回报的岗位。
针对这样的岗位,自己的努力是不够的,需要通过体系化的学习“走捷径”。
同时,如果能在数据运营或数据产品岗位方向,就把数据分析的整体思维框架底子打好,做到熟练掌握Excel、SQL、Python、BI等数据分析工具,也可以在晋升时快人一步——这些内容在上述的知学堂官方数据分析实战课程里也有系统化的实战教学,这也是推荐学习的原因。
以上。
希望能给你带来帮助。
拿出经典的“人货场”指标体系图,电商分析基本上也是围绕这三者展开。
人:在电商分析中基本上就是指用户数据,如客单价、会员增长率等
货:商品数据,如采购、库存、销量,售后数据等
场:这个包含的东西比较多,我认为凡是能将人与货匹配,最终完成转化的都可以称之为场。
促销期:618,双11,双12,年中大促,年底大促等
平常期:这个就随便取了
RMF分析:数据分析初学者必备!10分钟搭建RFM客户价值模型,一学就会
帕累托/ABC分析:能解决90%难题的数据模型——手把手教你学会帕累托模型
更多分析方法,查看年终盘点|15种最常用的数据分析方法和模型,赶紧收藏起来吃灰
a、场的维度:通过季销售趋势图及环比,还有各州金额分布分析了解平台销售走势和销售分布,了解平台销售是否健康及销售重点区域。
b、货的维度:通过帕累托分析品类销售情况,散点图探究品类宽度和销售关系,再通过价格带分析,了解平台产品定位。通过评价占比了解产品满意情况,通过产品完整性分析验证猜测。
作电商运营分析,其实Excel和FineBI就够了,中间两个在进阶中才需要学。如果数据不是很多,直接用Excel,我这边不多介绍怎么用了。如果数据量比较大,那就用FineBI,这个工具比Excel更方便一些。两个结合起来用也是可以的,把Excel文件导入到FineBI就行。
上面的案例就是用FineBI制作而成的,下面简单给大家介绍一下这个工具↓↓↓
制作过程简单:
模板demo数量丰富:
包含零售、建筑、银行、互联网、医药、制造、交通、物流等几十个分析场景,直接另存为分析模板使用。
中国联通:笔试以行测、性格测试、及部少量英语为主,部分省份有少量专业知识。应聘条件:
1、2015年一本院校范围内正规全日制本科及以上学历应届毕业生;专业对口。国家英语四级考试合格;2、学习能力强,专业基础理论知识扎实,具有较好的分析判断、语言表达、文字写作能力;3、身体健康,能够承受较大的工作压力;4、无不良行为记录,品德好,重诚信,作风正派,责任心强,勤奋踏实,具有较强的团队协作意识;
在当今信息爆炸的时代,大数据分析笔试成为越来越多企业选拔人才的重要环节。随着互联网的普及和各行业数据化程度的提高,对于懂得利用数据进行决策和解决问题的人才需求不断增长。
大数据分析涉及数据收集、清洗、分析和应用等多个环节,需要综合运用统计学、计算机科学、商业智能等知识。在面对海量数据时,如何从中提炼有效信息,为企业决策提供依据成为关键问题。因此,企业在招聘过程中注重候选人对于数据的处理能力以及对数据背后故事的理解,大数据分析笔试成为一种常见的选拔方式。
一般来说,大数据分析笔试会涉及数据处理工具的使用、基本统计知识、数据可视化、数据解读等方面。通过笔试,企业可以初步了解应聘者在数据处理方面的基本功底和分析能力,为后续的面试环节提供参考。
针对大数据分析笔试,应聘者可以从以下几个方面进行准备:
大数据分析笔试作为企业招聘流程中的重要一环,对于求职者来说是一次展示自己数据处理能力和分析思维的机会。通过充分准备,展现自己的优势,相信可以在竞争激烈的招聘环境中脱颖而出。
1、分析类目坑产(普遍成交金额)、客单价、竞争环境、产品成本,找到一个合适你的类目。
2、根据目标做好产品规划以及上架优化,通过优化达到成交最大化。
3、选择投入最小,获得最高产出的产品,通过搜索、场景、多多进宝等进行推广引流(付费)。
4、紧跟活动款脚步,最大限度蹭流量,比如秒杀9.9、爱逛街、品牌清仓等。
5、记录产品数据,根据数据分析,找出不足的地方。如果产品成交不行就重新规划进行优化,如果是流量不行就推广引流或者参加活动,通过这种循环的优化推广,反思店铺诊断,不停的提高产品利润,一直达到满意的标准。