数据挖掘技术有哪些常见问题

数据挖掘技术有:1、统计技术;2、关联规则;3、基于历史的分析;4、遗传算法;5、聚集检测;6、连接分析;7、决策树;8、神经网络;9、粗糙集;10、模糊集;11、回归分析;12、差别分析;13、概念描述等。

本教程操作环境:windows7系统、DellG3电脑。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。

数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。

数据挖掘的技术有很多种,按照不同的分类有不同的分类法。下面着重讨论一下数据挖掘中常用的一些技术:统计技术,关联规则,基于历史的分析,遗传算法,聚集检测,连接分析,决策树,神经网络,粗糙集,模糊集,回归分析,差别分析,概念描述等十三种常用的数据挖掘的技术。

1、统计技术

数据挖掘涉及的科学领域和技术很多,如统计技术。统计技术对数据集进行挖掘的主要思想是:统计的方法对给定的数据集合假设了一个分布或者概率模型(例如一个正态分布)然后根据模型采用相应的方法来进行挖掘。

2、关联规则

数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之I司存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。

3、基于历史的MBR(Memory-basedReasoning)分析

先根据经验知识寻找相似的情况,然后将这些情况的信息应用于当前的例子中。这个就是MBR(MemoryBasedReasoning)的本质。MBR首先寻找和新记录相似的邻居,然后利用这些邻居对新数据进行分类和估值。使用MBR有三个主要问题,寻找确定的历史数据;决定表示历史数据的最有效的方法;决定距离函数、联合函数和邻居的数量。

4、遗传算法GA(GeneticAlgorithms)

基于进化理论,并采用遗传结合、遗传变异、以及自然选择等设计方法的优化技术。主要思想是:根据适者生存的原则,形成由当前群体中最适合的规则组成新的群体,以及这些规则的后代。典型情况下,规则的适合度(Fitness)用它对训练样本集的分类准确率评估。

5、聚集检测

将物理或抽象对象的集合分组成为由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其它簇中的对象相异。相异度是根据描述对象的属眭值来计算的,距离是经常采用的度量方式。

6、连接分析

连接分析,Linkanalysis,它的基本理论是图论。图论的思想是寻找一个可以得出好结果但不是完美结果的算法,而不是去寻找完美的解的算法。连接分析就是运用了这样的思想:不完美的结果如果是可行的,那么这样的分析就是一个好的分析。利用连接分析,可以从一些用户的行为中分析出一些模式;同时将产生的概念应用于更广的用户群体中。

7、决策树

决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。

8、神经网络

在结构上,可以把一个神经网络划分为输入层、输出层和隐含层。输入层的每个节点对应—个个的预测变量。输出层的节点对应目标变量,可有多个。在输入层和输出层之间是隐含层(对神经网络使用者来说不可见),隐含层的层数和每层节点的个数决定了神经网络的复杂度。

除了输入层的节点,神经网络的每个节点都与很多它前面的节点(称为此节点的输入节点)连接在一起,每个连接对应一个权重Wxy,此节点的值就是通过它所有输入节点的值与对应连接权重乘积的和作为—个函数的输入而得到,我们把这个函数称为活动函数或挤压函数。

9、粗糙集

粗糙集理论基于给定训练数据内部的等价类的建立。形成等价类的所有数据样本是不加区分的,即对于描述数据的属性,这些样本是等价的。给定现实世界数据,通常有些类不能被可用的属性区分。粗糙集就是用来近似或粗略地定义这种类。

10、模糊集

模糊集理论将模糊逻辑引入数据挖掘分类系统,允许定义“模糊”域值或边界。模糊逻辑使用0.0和1.0之间的真值表示一个特定的值是一个给定成员的程度,而不是用类或集合的精确截断。模糊逻辑提供了在高抽象层处理的便利。

11、回归分析

回归分析分为线性回归、多元回归和非线性同归。在线性回归中,数据用直线建模,多元回归是线性回归的扩展,涉及多个预测变量。非线性回归是在基本线性模型上添加多项式项形成非线性同门模型。

12、差别分析

差别分析的目的是试图发现数据中的异常情况,如噪音数据,欺诈数据等异常数据,从而获得有用信息。

13、概念描述

概念描述就是对某类对象的内涵进行描述,并概括这类对象的有关特征。概念描述分为特征性描述和区别性描述,前者描述某类对象的共同特征,后者描述不同类对象之间的区别,生成一个类的特征性描述只涉及该类对象中所有对象的共性。

THE END
1.数据挖掘的主要技术和应用数据挖掘(Data Mining)是一种利用统计学、机器学习、数据库、算法等方法从大量数据中发现隐藏的模式、规律和知识的科学。数据挖掘技术广泛应用于商业、金融、医疗、科学等领域,为决策提供有价值的信息和洞察,提高了企业的竞争力和效率。 在本文中,我们将从以下几个方面进行阐述: https://blog.csdn.net/universsky2015/article/details/137300243
2.数据挖掘主要技术有哪些?新手必看!数据挖掘主要技术有哪些?新手必看! 数据挖掘主要技术包括统计学、聚类分析、决策树分类技术、人工神经网络。 1、统计学虽然是一门“古老的”学科,但它依然是最基本的数据挖掘技术,特别是多元统计分析,如判别分析、主成分分析、因子分析、相关分析、多元回归分析等。https://zhuanlan.zhihu.com/p/532097299
3.数据挖掘设计的技术有哪些帆软数字化转型知识库数据挖掘设计的技术有哪些 数据挖掘设计中常用的技术有分类、回归、聚类、关联规则和降维等。分类技术通过已知类别的数据集来训练模型,以便预测未知数据的类别;回归技术用于预测连续变量的数值;聚类技术将数据分组,使得同一组内的数据相似度较高,组间差异较大;关联规则技术用于发现数据项之间的有趣关系;降维技术通过减少https://www.fanruan.com/blog/article/583196/
4.数据挖掘的技术都有哪些?数据挖掘的技术都有哪些? 如果我们学习数据分析,那么肯定少不了也要好好学习一下数据挖掘。我们都知道,要想掌握好数据挖掘就需要掌握很多的相关技术。一般来说,数据挖掘工作的技术有关联规则、分类、聚类、决策树、序列模式,下面我们就给大家讲述一下这些知识。https://www.cda.cn/view/26917.html
5.数据挖掘技术主要包括哪些?数据挖掘的技术,可分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归https://m.imooc.com/wenda/detail/508957
6.数据挖掘有哪些功能导读随着大数据发展越来越好,数据挖掘成为了未来发展的一大趋势,数据挖掘和分析技术在各行业发挥着重要作用,小编为大家整理了数据挖掘的具体功能介绍,一起来看看吧。 数据挖掘有哪些功能: 数据挖掘通过预测未来趋势及行为,做出前摄的、基于知识的决策。数据挖掘的目标是从数据库中发现隐含的、有意义的知识,主要有以下五https://www.baijiao.org/school/zhengzhouxinyingdajiaoyu/news/14499.html
7.数据仓库系统的技术有哪些数据仓库系统的技术主要包括ETL(抽取、转换、加载)、数据建模、数据挖掘和OLAP多维分析。ETL用于数据的提取、清洗和加载;数据建模用于设计数据仓库的结构;数据挖掘用于发现数据中的模式和趋势;OLAP多维分析用于对数据进行多维度的分析和查询。 数据仓库系统的技术有哪些 https://h.chanjet.com/ask/7690e15a41ff9.html
8.数据统计分析和数据挖掘有何区别?大数据CIO时代网摘要:从实践应用角度来看,这个问题并没有很大的意义,正如“不管黑猫白猫,抓住老鼠才是好猫”一样,在企业的商业实战中,数据分析分析问题、解决问题时,首先考虑的是思路,其次才会对与思路匹配的分析挖掘技术进行筛选,而不是先考虑到底是用统计技术还是用数据挖掘技术来解决这个问题。 https://www.ciotimes.com/bigdata/158710.html
9.大数据挖掘主要涉及哪些技术?大数据挖掘主要涉及的技术有以下几种:1、决策树学习技术;2、分类技术;3、聚类分析技术;4、粗糙集技术;5、回归分析技术;6、关联规则技术;7、特征分析技术;8、神经网络技术;9、遗传算法技术。 1、决策树学习技术 决策树学习是一种通过逼近离散值目标函数的方法,通过把实例从根节点排列到某个叶子节点来分类实例,叶https://www.linkflowtech.com/news/1988
10.商务智能包括哪些技术商务智能包括哪些技术 商务智能这一术语1989年由Gartner Group的Howard Dresner首次提出,它描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。商务智能包括的技术有:1、数据仓库;2、数据挖掘;3、数据集成和存储管理;4、数据分析和建模;5、联机分析处理(OLAP)。https://36kr.com/p/1497099355715712
11.一文回顾近二十年数据科学领域的里程碑事件或突破性技术总之,“大数据”和“数据科学”成为了当前最流行的词汇之一。那么,在进入21世纪后迅速发展的短短二十年中,数据科学领域有哪些里程碑事件或突破性技术值得铭记呢?下面让我们来一一盘点。 一、2001年 1.数据挖掘 数据挖掘其实是一个逐渐演变的过程。电子数据处理的初期,人们就试图通过某些方法来实现自动决策支持,当时https://maimai.cn/article/detail?fid=1446221264&efid=1yTum-SWXEP826HTaiNUkA
12.数据挖掘的技术有很多种,按照不同的分类有不同的分类法数据挖掘的技术有很多种,根据不同的分类有不同的分类方法。以下是数据挖掘中常用的一些技术:统计技术、相关规则、基于历史分析、遗传算法、聚集检测、连接分析、决策树、神经网络、粗糙集、模糊集、回归分析、差异分析、概念描述等13种常用的数据挖掘技术。 https://www.tulingxueyuan.cn/tlzx/jsp/1626.html