什么是BI,BI的核心技术有哪些

基于大数据引擎,通过可视化组件、托拉拽式实现数据汇聚与集成开发

指标定义、指标建模、指标固化、指标分析,一体化完成指标的落地与应用

组件化、零sql实现各类复杂报表和丰富多样的图表分析

面向业务人员,简单拖拽即可生成可视化图表

内置150+特效组件,快速打造酷炫灵动的可视化大屏,支持在线编码,拓展视觉体验至极致

搭载自然语言分析引擎,引入AI大模型技术,通过简单的对话问答实现快速数据分析

移动采集、审批、分析一站式解决移动办公诉求

一站式数据分析平台

了解ABI

全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。

内置多类主数据模版,可视化实现多视角模型定义,满足复杂规则的编码自动控制

多种数据接入方式,支持不同场景的审批管控,数据版本可回溯,满足主数据的全生命周期管理

拖拽式任务设计,内置丰富组件,支持主动式、被动式分发模式

全过程质量管控,支持内置及自定义规则,提供图表式质检报告

主数据管理平台

在线模型设计,深度融合数据标准,规范数据定义

自动化元数据感知,全链路血缘提取,理清数据资源

智能化标准推荐,一键式数据落标,树立数据权威

“零”编码规则搭建,全流程质量整改,高速数据质检

规范资产目录,自助式数据共享,释放资产价值

超30+主流数据库、国产库、大数据库、文件、消息队列等接口之间极速交换结构化、非结构化数据

构建分级分类体系,动态数据脱敏,保障数据安全

全盘监控数据,决策数据周期,释放数据资源

智能数据治理平台

了解睿治

覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。

结合标准体系的可视化建模工具,支持模型的正、逆向构建

拖拽式任务编排,内置丰富组件,支撑亿级数据的快速处理与迁移

具备高并发、高吞吐量、低延迟的一体化任务编排能力,可视化设计、分布式运行

提供图形化的任务监控和日志跟踪,面向运维、管理人员的完善监控体系

数据工厂系统

纯web设计器,零编码完成基本表、变长表、中国式复杂报表、套打表、问卷调查表等制作;支持年报、月报、日报,以及自定义报表期等多种数据采集报送频率

提供在线填报和离线填报两种应用模式,也支持跨数据源取数;填报数据自动缓存在WEB浏览器中,即使宕机也不会丢失

内置灵活轻便的工作流引擎,实现了用户业务过程的自动化;支持层层审批、上级审批、越级审批、自定义审批等多种审批方式

对于下级填报单位上报的数据,上级汇总单位可将其进行汇总;支持层层汇总、直接下级汇总、选择单位汇总、按条件汇总、按代码组汇总、按关键字汇总、自定义汇总等

提供数据锁定机制,防止报表数据被意外修改;支持数据留痕,辅助用户过程追溯;未及时上报的用户自动催报;所见即所得的打印输出等

提供多种类型的数据接口,可以导入EXCEL、DBF、二进制、文本等格式的数据,可以将报表数据批量输出为HTML、EXCEL、XML、TXT等格式

数据采集汇总平台

统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。

采用可视化、导向式方式构建指标业务域,形成指标地图,全局指标一览在目

流程化自助式的定义、开发、维护各类指标,零建模,业务人员即刻上手

助力企业更好地查询、使用指标,提供共享、交换、订阅、分析、API接口等应用服务

指标管理平台

零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。

面向业务的对话式问数,即问即答,更懂你的诉求

理解数据,洞察数据,更懂数据内容,把数据见解讲给你听

动态地分析数据特点,提供最合适的图表类型展示,让数据展现更简单

完全是颠覆做表的方式,一句话看板创建,启发式内容制作

智能化生成包含深入分析和建议的报告,复杂数据简单化,释放数据潜力

数据跃然屏上的AI大屏汇报,让数据讲述故事

海量知识,一触即达,提供更智能的知识检索服务,快速找到“对”的人

不止于工具,更是随时待命的得力助手。一声指令,为您提供即时的数据分析和决策支持

THE END
1.数据挖掘的主要技术和应用数据挖掘(Data Mining)是一种利用统计学、机器学习、数据库、算法等方法从大量数据中发现隐藏的模式、规律和知识的科学。数据挖掘技术广泛应用于商业、金融、医疗、科学等领域,为决策提供有价值的信息和洞察,提高了企业的竞争力和效率。 在本文中,我们将从以下几个方面进行阐述: https://blog.csdn.net/universsky2015/article/details/137300243
2.数据挖掘主要技术有哪些?新手必看!数据挖掘主要技术有哪些?新手必看! 数据挖掘主要技术包括统计学、聚类分析、决策树分类技术、人工神经网络。 1、统计学虽然是一门“古老的”学科,但它依然是最基本的数据挖掘技术,特别是多元统计分析,如判别分析、主成分分析、因子分析、相关分析、多元回归分析等。https://zhuanlan.zhihu.com/p/532097299
3.数据挖掘设计的技术有哪些帆软数字化转型知识库数据挖掘设计的技术有哪些 数据挖掘设计中常用的技术有分类、回归、聚类、关联规则和降维等。分类技术通过已知类别的数据集来训练模型,以便预测未知数据的类别;回归技术用于预测连续变量的数值;聚类技术将数据分组,使得同一组内的数据相似度较高,组间差异较大;关联规则技术用于发现数据项之间的有趣关系;降维技术通过减少https://www.fanruan.com/blog/article/583196/
4.数据挖掘的技术都有哪些?数据挖掘的技术都有哪些? 如果我们学习数据分析,那么肯定少不了也要好好学习一下数据挖掘。我们都知道,要想掌握好数据挖掘就需要掌握很多的相关技术。一般来说,数据挖掘工作的技术有关联规则、分类、聚类、决策树、序列模式,下面我们就给大家讲述一下这些知识。https://www.cda.cn/view/26917.html
5.数据挖掘技术主要包括哪些?数据挖掘的技术,可分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归https://m.imooc.com/wenda/detail/508957
6.数据挖掘有哪些功能导读随着大数据发展越来越好,数据挖掘成为了未来发展的一大趋势,数据挖掘和分析技术在各行业发挥着重要作用,小编为大家整理了数据挖掘的具体功能介绍,一起来看看吧。 数据挖掘有哪些功能: 数据挖掘通过预测未来趋势及行为,做出前摄的、基于知识的决策。数据挖掘的目标是从数据库中发现隐含的、有意义的知识,主要有以下五https://www.baijiao.org/school/zhengzhouxinyingdajiaoyu/news/14499.html
7.数据仓库系统的技术有哪些数据仓库系统的技术主要包括ETL(抽取、转换、加载)、数据建模、数据挖掘和OLAP多维分析。ETL用于数据的提取、清洗和加载;数据建模用于设计数据仓库的结构;数据挖掘用于发现数据中的模式和趋势;OLAP多维分析用于对数据进行多维度的分析和查询。 数据仓库系统的技术有哪些 https://h.chanjet.com/ask/7690e15a41ff9.html
8.数据统计分析和数据挖掘有何区别?大数据CIO时代网摘要:从实践应用角度来看,这个问题并没有很大的意义,正如“不管黑猫白猫,抓住老鼠才是好猫”一样,在企业的商业实战中,数据分析分析问题、解决问题时,首先考虑的是思路,其次才会对与思路匹配的分析挖掘技术进行筛选,而不是先考虑到底是用统计技术还是用数据挖掘技术来解决这个问题。 https://www.ciotimes.com/bigdata/158710.html
9.大数据挖掘主要涉及哪些技术?大数据挖掘主要涉及的技术有以下几种:1、决策树学习技术;2、分类技术;3、聚类分析技术;4、粗糙集技术;5、回归分析技术;6、关联规则技术;7、特征分析技术;8、神经网络技术;9、遗传算法技术。 1、决策树学习技术 决策树学习是一种通过逼近离散值目标函数的方法,通过把实例从根节点排列到某个叶子节点来分类实例,叶https://www.linkflowtech.com/news/1988
10.商务智能包括哪些技术商务智能包括哪些技术 商务智能这一术语1989年由Gartner Group的Howard Dresner首次提出,它描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。商务智能包括的技术有:1、数据仓库;2、数据挖掘;3、数据集成和存储管理;4、数据分析和建模;5、联机分析处理(OLAP)。https://36kr.com/p/1497099355715712
11.一文回顾近二十年数据科学领域的里程碑事件或突破性技术总之,“大数据”和“数据科学”成为了当前最流行的词汇之一。那么,在进入21世纪后迅速发展的短短二十年中,数据科学领域有哪些里程碑事件或突破性技术值得铭记呢?下面让我们来一一盘点。 一、2001年 1.数据挖掘 数据挖掘其实是一个逐渐演变的过程。电子数据处理的初期,人们就试图通过某些方法来实现自动决策支持,当时https://maimai.cn/article/detail?fid=1446221264&efid=1yTum-SWXEP826HTaiNUkA
12.数据挖掘的技术有很多种,按照不同的分类有不同的分类法数据挖掘的技术有很多种,根据不同的分类有不同的分类方法。以下是数据挖掘中常用的一些技术:统计技术、相关规则、基于历史分析、遗传算法、聚集检测、连接分析、决策树、神经网络、粗糙集、模糊集、回归分析、差异分析、概念描述等13种常用的数据挖掘技术。 https://www.tulingxueyuan.cn/tlzx/jsp/1626.html