“大数据”核心知识精粹!

大数据就是指规模巨大、复杂多样的数据集合,无法用传统的数据处理工具进行捕捉、管理、处理和分析的数据。简而言之,就是规模巨大、类型繁多、处理速度要求高的数据集合,它不仅仅是大,更显著的作用是在于其背后的价值挖掘与智能决策能力,是需要运用新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

一、大数据的定义

广义定义:指物理世界到数字世界的映射和提炼,通过发现其中的数据特征,激活数据价值,从而做出提升效率的决策行为。

狭义定义:指通过对数据的获取、存储、分析,从大容量数据中挖掘价值的一种全新的技术架构。

二、大数据的特点

Volume(大量):数据规模庞大,以PB、EB甚至ZB为单位。

Velocity(高速):数据产生和处理的速度非常快,要求实时分析。

Variety(多样):数据类型繁多,包括结构化、半结构化和非结构化数据。

Value(价值):虽然数据量大,但真正有价值的信息需要深度挖掘。

Veracity(真实性):数据的准确性和可靠性是数据分析的前提。

三、大数据的类型

结构化数据:以关系型数据库表形式管理的数据,例如企业ERP、OA、HR里的数据。

非结构化数据:数据结构不完整或者不规则,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据,例如Word、PDF、PPT及各种格式的图片、视频等。

半结构化数据:非关系模型的、有基本固定结构模式的数据,例如日志文件、XML文档、JSON文档、E-mail等。

四、大数据的关键技术

数据采集与存储:通过ETL(Extract,Transform,Load)等技术,从各种源头收集数据,并利用分布式存储系统(如HadoopHDFS)进行高效存储。

数据治理与分析:利用MapReduce、Spark等分布式计算框架,对数据进行清洗、转换和聚合,再通过机器学习、数据挖掘等技术挖掘数据背后的价值。

数据可视化:通过图表、仪表盘等工具,将复杂的数据分析结果以直观的方式展现出来,帮助非技术人员理解数据。

数据管理:指应用数据库管理、数据仓库等信息系统技术和其他数据管理工具,完成组织数据资源管理任务。

数据安全与隐私保护:在享受大数据带来便利的同时,必须重视数据的安全与隐私保护,采用加密、脱敏等技术手段确保数据安全。

五、大数据的应用场景

在产业经济领域:大数据被用于产业监测、产业规划、政策制定、资源调度等方面。

在商业市场领域:大数据被用于市场营销、客户关系管理、风险监控、供应链管理等方面。

在医疗健康领域:大数据被用于疾病预测、医疗诊断、药物研发等方面。

在城市规划领域:大数据被用于交通管理、资源配置、环境监测、公共安全等方面。

在科学研究领域:大数据被用于天文学、生物学、物理学等各个学科。

六、大数据的价值

趋势预测:通过对沉淀下来的大量的数据分析,可以发现隐藏在数字背后的规律和趋势,以此来预测未来发展的动态和趋势,这在政府管理和企业决策方面至关重要。

决策优化:通过对大数据分析后制定出的经营管理的策略,具有客观性、科学性等特征,为决策者提供依据,改变过去决策的主观臆断和不及时性。

创新经营模式,提升服务体系质量:通过全面的、科学的分析数据,充分了解用户需求及行为习惯,企业实现为用户提供定制化的产品及服务体系,提升用户的满意度。转变企业商业模式,提质增效,提升企业的竞争优势。

七、大数据的发展演进

第一阶段(起步阶段):数据库被发明之后,使得数据管理的复杂度大大降低。各行各业开始产生了数据,从而被记录在数据库中。这个阶段的数据,以结构化数据为主。数据的产生方式,也是被动的。

第三阶段(加速阶段):是万物互联和数字化转型阶段。随着物联网的发展,各种各样的感知层节点(传感器、摄像头等)开始自动产生大量的数据,实现物理世界向数字世界的映射。

八、大数据未来发展趋势

资产化:大数据价值不断提升,在企业和社会层面成为重要的战略资源、无形资产。

智能化:大数据将更加智能化,可以自动进行数据处理和分析,提高数据处理效率和质量。

安全性:大数据将更加注重数据安全,采用更加严格的数据保护措施,确保数据的安全性和隐私性。

THE END
1.数据挖掘概念(AnalysisServices该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: 您在查找什么?您要尝试找到什么类型的关系? 您要尝试解决的问题是否反映了业务策略或流程? 您要通过数据挖掘模型进行预测,还是仅仅查找受关注的模式和关联? https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.大数据分析挖掘潜力洞察研究大数据分析挖掘潜力-洞察研究 下载积分: 1388 内容提示: 大数据分析挖掘潜力 第一部分 大数据分析的定义与特点 2 第二部分 大数据分析挖掘技术的发展历程 5 第三部分 大数据分析挖掘在各行业的应用案例 https://www.doc88.com/p-70480475177656.html?s=rel&id=3
3.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘是从大量数据中提取有用信息的方法,主要分为四种分析方式:关联分析、序列模式分析、分类分析和聚类分析。在本指南中,我们将详细介绍这四种方法的实现过程,并提供相应的代码示例。 数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 https://blog.51cto.com/u_16213297/12863680
4.数据挖掘的六大主要功能数据挖掘的六大主要功能 数据挖掘的历史虽然较短,但从20世纪90年代以来,它的发展速度很快,加之它是多学科综合的产物,目前还没有一个完整的定义,人们提出了多种数据挖掘的定义,例如:SAS研究所(1997):“在大量相关数据基础之上进行数据探索和建立相关模型的先进方法”。Hand et al(2000):“数据挖掘就是在大型数据库https://www.cda.cn/view/25648.html
5.数据挖掘主要包含哪些功能?数据挖掘的功能数据挖掘的功能主要包括,数据分类、数据估计、数据预测、数据关联分组、数据聚类,及数据循序样式采矿等六大功能。 数据分类 数据分类为数据挖掘中常见的功能之一,顾名思义即是将分析对象依不同的属性分类加以定义,建立不同的类组。数据挖掘中的分类是指针对未发生的结果进行预测分类,主要包括归纳和推论两步骤,其主要目https://blog.csdn.net/duozhishidai/article/details/87968943
6.数据挖掘的主要功能是什么?患者男性,19岁,在烈日下踢足球1 小时,大量出汗,出现头晕、胸闷、心悸、 恶心,左侧小腿肌肉痉挛。査体:腋温 38℃, 脉搏105次/分,血压90/50mmHg,神志清 楚,双肺未闻及干湿性啰音,心率105次/分,律齐。最可能的诊断是 https://www.shuashuati.com/ti/11e1b939ca024937b7016d66d7af898b.html
7.管理信息系统第三部分作业011赖颖璇同时这个系统也不是静止不变的,不但网络间传输的数据不断变化,而且网络的构成模式也在实时进行调整。 6.数据挖掘的主要功能: 数据挖掘主要分为六大功能:(1)数据特征化;(2)关联分析;(3)分类与预测;(4)聚类分析;(5)离群点分析;(6)演化分析。https://www.cnblogs.com/lyx1997/p/8179176.html
8.软考高级——信息系统项目管理师(第4版)思维导图模板相当于工业互联网的“操作系统”,它有四个主要作用: 数据汇聚。网络层面采集的多源、异构、海量数据,传输至工业互联网平台,为深度分析和应用提供基础。 建模分析。提供大数据、人工智能分析的算法模型和物理、化学等各类仿真工具,结合数字孪生、 工业智能等技术,对海量数据挖掘分析, 实现数据驱动的科学决策和智能应用。https://www.processon.com/view/654c455f8f11b40fe56ece43
9.2022年职业教育国家级教学成果奖“数字化”主题获奖成果分析1.数据挖掘,促进教学管理模式创新 在现代教育管理理念指导下,一些职业院校持续调整教学管理体系结构,特别是针对传统教学管理中各自为政、效率低下等问题,挖掘智慧平台系统优势,有效打通职业教育教学过程全要素和教学管理全流程。比如,陕西工业职业技术学院等单位建设了包括教育教学管理平台等六大信息化模块,依托数据中心,实现https://www.lnxdfwxy.edu.cn/info/1046/9319.htm
10.网络规划设计师论文(推荐10篇)传统规划主要从覆盖与干扰两个维度分析,不能完全识别出高价值站点,导致网络部署后出现建设偏离业务热点,超闲小区较多等问题。而基于大数据挖掘的LTE网络规划可基于话务热点、用户/终端及价值业务等多维度进行关联性分析。首先梳理出数据及话务热点、智能终端/数据卡渗透高区域,判定流量价值高的区域;其次发掘出数据业务使用https://www.hrrsj.com/wendang/lunwen/728372.html
11.2022年泸州公需科目答案51教学网2.信息检索和数据挖掘都是从数据中发现有价值的“东西"A.正确 正确答案:A 3.百度搜索引擎是一个集信息控集、信息存储、信息组织。信息交流等信息功能为-体的,具备强大信息辅助功能的网络信息工具。A.正确 正确答案:A 4.本讲是到习近平总书记在党的十九大报告中指出:“有事好商量众人的事情由众人商量是人民民主https://www.51jiaoxue.cn/post/1321.html
12.客户关系管理论文(精选14篇)例如,应用数据统计模块查找定向信息,或者应用互联网的搜索功能进行相应的网页或者是网站的查找,则是数字挖掘技术中的信息检索(informationretrieval)领域的技术。随着数据挖掘技术的应用范围和应用种类的不断扩张,当下数据挖掘技术已经被广泛的应用于信息检索工作的开展进程中。根据当下数字挖掘技术的主要应用特点和应用方向,https://wenku.puchedu.cn/7237.html
13.网络数据库毕业论文8篇(全文)JDBCAPI主要是实现与JDBCManager之间的通信功能,JDBCDriverAPI主要是实现数据库驱动程序与JDBCManager之间的通信功能,也可建立新的数据库连接,实现全局SQL数据库快捷访问[3]。JDBC结构示意图如图1所示。JDBCAPI功能模块中包含许多数据库操作常用的接口,负责建立数据库连接,实现对孤岛采油厂生产信息网络远程数据库的访问。https://www.99xueshu.com/w/file3w3lw5fn.html
14.智能质检系统功能(六大功能介绍)总之智能质检系统可以实现自动质检,能有效提高工作的效率,提高人工的服务,凭借着这六项功能已经深入人心,得到众多企业的认可,可以给企业带来强而有力的帮助。 合力亿捷智能质检系统基于ASR/NLP/情感模型/数据挖掘等能力支撑,支持在线文本/通话录音/工单文本等多数据源检测,提供开放的个性化质检模型匹配,人工质检与机器质检https://www.hollycrm.com/innews/related/4992.html
15.袁锋元宇宙空间著作权合理使用制度的困境与出路——以转换性使用正如在美国的“Hathi Trust案”与“谷歌图书馆案”中,谷歌公司均使用了文本数据挖掘技术,对原作进行完整的数字化复制和利用。但其提供的搜索和片段浏览功能是为了方便用户搜索其感兴趣的书籍,提高用户检索图书的效率,同时也利于保存古老文集,有助于学术研究,有益于社会公众,因而具有高度转换性而不构成侵权。也正是https://www.jfdaily.com/sgh/detail?id=662666
16.QC小组活动那些事儿知识库质量学堂质量管理知识库2020版准则4.1.3b)条款要求对数据和信息进行分层整理和分析,更加强调“分层整理”的重要性。这么做是为了规避很多QC小组经常犯的一个错误,即对反映课题现状的数据挖掘不够充分,分层不够全面和深入,在其后的原因分析阶段不得不再次进行分层分析。 3)确定主要原因 http://www.jzx7788.com/html/anlifenxi/183865.html