大数据审计应用实践初探

随着大数据的产生和发展,大数据已成为一种非常重要的战略资源,并在提升产业竞争力、国情分析和社会管理等方面发挥着愈发重要的作用。同样,审计机关在执行审计监督的过程中,运用大数据审计在加快构建集中统一、全面覆盖、权威高效的审计监督体系起到了不可替代的作用。目前,大数据审计工作模式及应用已贯穿审计全过程,提升了审计跨领域、跨层级、跨系统、多思维的数据分析水平,推进了审计全覆盖。加大财务数据与业务数据、单位数据与行业数据以及跨行业、跨领域数据的综合比对和关联分析,可极大提升审计效率,使“大海捞针”变为“重点撒网”,使审计的深度、广度和精度得以实现新的拓展,推动审计工作迈向大数据审计时代。本文从大数据审计内涵及特征入手,重点通过关联分析,对大数据审计的应用做初步探讨。

一、大数据审计内涵及特征

(一)大数据审计的概念

(二)大数据审计的特征

2.技术特征。“审计全覆盖”的要求使得大数据审计的范围大大扩充,审计对象更加复杂多样。与此同时,数据跨行业、跨部门、跨领域,信息系统复杂多样,使得数据采集、预处理、分析挖掘和可视化技术应用更加复杂化、多样化、精益化和动态化。

二、大数据审计的技术方法

(一)关联分析

(二)结构分析

(三)趋势分析

(四)数据挖掘

数据挖掘是指从大量的数据中自动搜索隐藏于其中的信息的技术。审计数据挖掘是指审计人员使用离群点挖掘、孤立点检测、异常点检测、聚类分析和关联规则等方式确定审计问题的一种方法。

三、大数据审计的步骤

(一)数据采集

审计数据采集不仅会影响到对被审计单位的审计结论,还会影响审计项目资源的投入产出,因此审计数据采集是审计项目开展的重要环节。审计数据采集应满足以下原则:一是应能实现审计实施方案的审计目标,二是要在对被审计单位业务流程、信息系统充分了解基础上进行数据采集,三是不仅要采集被审计单位的内部数据,还要选择外部关联数据。在数据采集方式上可以采取联网数据共享与采集、定点采集和定期报送方式实现。

(二)数据储存

由于大数据的容量大、类型多、范围广等特点,造成审计机关采集数据储存方式难。要实现大数据的有效储存,一是做好大数据的顶层设计和统筹规划,二是加快实施“金审三期”工程,完成“审计云”建设,为下一步数据储存提供明确的方向和思路。

(三)数据清洗

数据清洗主要内容是检查、分析数据的质量,修正数据。审计数据清洗的任务是过滤不完整、错误和重复的数据,只有通过清洗与过滤得到干净完备的数据,才能通过分析与挖掘得到可用于支撑审计问题和决策的数据基础。

(四)数据分析

2.分析审计数据模型。主要是指为实现分析模型,需要哪些具体的审计数据,根据已建立的审计分析模型,确定待用的基础表,并且要对具体的数据进行研究,确定各字段、代码和业务数据具体内容代表的含义等。分析的过程中,需要综合数据词典和数据库说明等技术文档对数据的含义,对业务流程的理解等方面的认知情况,对数据产生全面、深入的认识。

3.建立分析性“中间表”。利用被审计单位数据库中的数据来实现审计分析,要对清理、转换后的基础数据按审计目的进行“再加工”,从基础数据中选择出所需要的数据,生成能完成审计分析的数据表。为了实现最终的分析,在数据分析的过程中往往需要构建多个数据表,这就是分析性“中间表”。建立审计分析性“中间表”一般是通过对选定的基本表进行“投影”“联接”等操作来实现。

4.完成审计模型分析。按照分析模型,采用一定的方式、方法,对数据进行具体的分析,得出结果,完成分析。审计的数据分析可分为三个层次:第一个层次为数据分析人员通过sql、oracle等语言来交互式地描述查询要求,对数据库中的记录进行访问和查询,实现查询型分析;第二个层次为数据分析人员先提出自己的假设,然后利用各种工具和方法进行反复递归的检索查询发现问题,实现验证型分析;第三个层次为数据分析人员通过趋势分析和行为分析,挖掘出大数据中可能被忽略的信息,为审计人员作出前瞻性的决策提供帮助,实现挖掘型分析。

(五)疑点核实

目前数据分析结果不能直接作为审计结论,必须要通过查证延伸,才能获取被审计单位的认可。也就是说,数据分析结果只是缩小审计范围,提取出“嫌疑数据”,提高延伸审计的质量,得出审计结论还是要经过审计查证这一过程。

四、大数据实践与探索--关联分析的应用

(一)纵向关联分析应用

1.资金维度数据分析。某省财政部门使用的是财政预算管理信息系统。其中,指标管理系统包含FROMCTRLID和TOCTRLID两个字段,将指标管理系统里的指标流向串联起来;该系统中包含映射表,控制可执行指标、国库集中支付和总预算会计账务系统的对应关系,跟踪资金的最终流向,确定最终收款方;该系统可以将指标、用款计划、支付申请、支付凭证、总预算会计凭证等关联起来,实现资金流向的逐层分析。如可按照项目资金流,先从指标管理系统查询项目资金下达中涉及单位及执行情况,再通过国库集中支付系统查询该项目对应资金的最终收款方,对资金流进行追踪,筛选出同一企业享受多种不同财政补助、相似项目多头申报财政补助、连续多年财政直接支付给相同个人等疑点线索,看是否存在资金沉淀、资金滞留财政及部门当年未实际支出等问题。

2.业务维度数据分析。医院管理信息系统(HIS)主要包括药库、药房、门诊、住院四个管理子系统的电子数据,存储的每一条记录都有明确含义,存在紧密的业务对应关系,因此可利用其业务关系建立审计分析模型,发现问题线索。如在医院财政财务收支审计中,审计人员可通过病人的住院天数计算出实际应按天收取的床位费、护理费、暖气费等项目,再以病人ID号为关键字进行关联,计算应收与实收的医疗费用差额,看医院是否存在多收病人医疗费的现象。

(二)横向关联分析应用

横向关联分析是指通过使用关联数据的关键字段对来自同一部门不同业务系统之间或者不同部门业务系统之间数据关联比对,实现不同数据库的整合展示,发现审计疑点线索。其中关联字段比较常用的有身份证号码、统一社会信用代码、工商登记号等。

1.同一部门不同账务系统数据分析。审计人员可借助外部数据发现关联事项,再顺藤摸瓜进行关联审计,揭示一些现象后面掩盖的真相。如通过比对被审计单位的财务账和工会账等,可发现部分房租收入列入单位工会而未做单位财务收入;部分资金,如接受捐赠、变卖资产等,长期体外循环,单位不列收列支的情况等,诸如这类违纪违法活动,单从单位财务账很难发现端倪。

2.不同部门业务系统间数据分析。不同部门间数据关联比对往往以一个数据为主,其他业务数据起到佐证作用,称为“1+N”数据模式,通常可以包含财务数据和业务数据,也可以包含多个业务数据和行业数据,例如在扶贫资金审计中,因为扶贫资金发放面广、链长、点多、量小,要做到审计监督全覆盖必须创新审计方式方法,强力推进大数据关联分析。其中各类资金发放都有相应的政策法规规定,一些还有比较严格的条件限制,而这些前提条件往往可通过其他部门业务数据间接佐证。利用多部门数据间的关联关系,以贫困人口建档立卡、危房改造、低保户信息为主,身份证号作为关键关联字段,分别与财政供养人员、工商登记、个人所得税、房产、车辆、证券、医保、死亡人员信息等数据关联比对,可发现扶贫对象、危旧房改造对象、低保户认定不精准和扶贫资金安全方面问题线索,大大提升了精准审计力度和工作效率。

3.外部数据关联分析。部分业务数据作为外部数据被广泛应用于各类审计项目中,如工商登记和税务信息等。例如通过将财政供养人员与工商登记信息比对分析,可发现公职人员经商办企业的问题;通过将企业领导干部与个人所得税信息进行比对分析,发现领导干部兼职取酬的问题。

THE END
1.数据挖掘的数据清洗方法数据清洗是数据挖掘过程中的一个关键环节,它可以帮助提高数据的质量和可靠性,从而提高数据挖掘的效果。数据清洗可以减少数据错误的影响,提高数据分析的准确性和可靠性,从而提高数据挖掘的效果。 3.核心算法原理和具体操作步骤以及数学模型公式详细讲解 3.1 数据整理 https://blog.csdn.net/universsky2015/article/details/137324459
2.数据挖掘怎么清洗帆软数字化转型知识库数据挖掘需要进行数据清洗以确保数据质量、提高模型的准确性、减少噪声和冗余、统一数据格式、填补缺失值、删除重复数据。数据清洗是数据挖掘过程中的关键步骤之一,它对后续的数据分析和建模起到至关重要的作用。数据清洗可以通过以下步骤来实现:数据预处理、数据转化、数据集成、数据归约。数据预处理是数据清洗的第一步,https://www.fanruan.com/blog/article/574111/
3.数据挖掘的步骤包括什么首先,需要收集与待挖掘主题相关的数据。可能涉及从各种来源(如数据库、文件、网络等)获取数据,并将其清洗、整合到一个统一的格式中。 2、数据预处理 收集到的数据往往包含噪声、缺失值或异常值,需要进行预处理以保证数据的质量和一致性。预处理步骤包括数据清洗(删除或填充缺失值、处理异常值)、数据转换(将数据转换https://www.pxwy.cn/news-id-81213.html
4.数据清洗的概念常见问题及实践(数据清洗)数据清洗:确保数据分析准确性的关键步骤 数据已成为现代企业和组织决策的重要依据。然而,原始数据往往存在各种问题,如缺失值、错误值、重复数据等,这些问题会严重影响数据分析的准确性和可靠性。数据清洗作为数据预处理的关键环节,发现并纠正数据集中的错误和不一致信息,为后续的数据分析和挖掘打下坚实的基础。本文探讨数https://www.hypers.com/content/archives/5287
5.如何做采购数据分析步骤五:撰写采购数据分析报告,提出优化建议和决策支持。 关键词:如何做采购数据分析 在采购过程中,数据分析是至关重要的一环。通过对采购数据的深入分析,我们可以更好地了解供应链情况、优化采购流程、降低成本、提高效率。那么,如何做好采购数据分析呢?接下来我将从采购目标、数据收集、数据清洗、数据分析、数据可视化https://h.chanjet.com/ask/4f59bead0acf6.html
6.网络资源:数据挖掘实战2(航空公司客户价值分析)freq(最高频数)、mean(平均值),std(方差),min(最小值),50%(中位数),max(最大值)''' explore.to_excel(result_file)#导出结果 统计结果如下: 四、数据预处理 1、数据清洗 1、丢弃票价为空的记录 2、丢弃票价为0,但平均折扣率不为0,总飞行公里数大于0的记录。(脏数据) https://nonlinear.wtu.edu.cn/info/1117/1664.htm
7.数据处理的六步骤上述步骤提供了一个基本的框架,可帮助实现可靠的数据处理,在数字孪生技术栈中其他的技术可能根据具体的需求和应用进行进一步扩展和细化。 二、数据处理的六步骤 数据处理在数字孪生中扮演着重要的角色,它包括以下几个方面: 数据清洗 对采集到的数据进行清洗和预处理,包括去除噪声、填补缺失值、处理异常值等。清洗后的https://www.esensoft.com/industry-news/dx-33247.html
8.为了让数据变得可用,需要对数据进行三个步骤的处理,分别是()数据清洗 B、数据抽样 C、数据管理 D、数据分析 答案 查看答案 更多“为了让数据变得可用,需要对数据进行三个步骤的处理,分别是()”相关的问题 第1题 据《2015中国网络文学版权保护白皮书》披露,网络文学盗版的进化速度十分惊人。近年来,专业化盗版网络文学站点由大站转向小站,由在线转向下载,由电脑端转向手机端等https://www.educity.cn/souti/C4E11027.html
9.数据挖掘的流程包含哪些步骤?数据挖掘是从大量数据中挖掘出有用的信息和模式的过程。它涉及多个步骤,从数据收集到模型评估。以下是数据挖掘的常见流程步骤:理解业务目标:在进行数据挖掘之前,需要明确业务目标和问题。确定要解决的问题以及所需的结果有助于指导整个流程。数据收集:在 https://www.cda.cn/view/202981.html
10.数据分析流程包括哪些步骤在数据分析流程中,数据采集是一个关键步骤。数据采集涉及到数据源的选择、数据收集和数据清洗。数据源可以是数据库、文件、API等,需要根据具体情况进行选择。数据收集需要根据业务问题和目标,采用相应的方式进行收集,如爬虫、调查问卷等。数据清洗是指对原始数据进行预处理,包括去除重复数据、处理缺失值、异常值和噪声数据https://www.linkflowtech.com/news/1597
11.介绍KDD流程及其与知识提取数据挖掘的相关性数据挖掘中kdd的步骤G. H. John提出的螺旋处理过程模型阶段:定义问题、抽取数据、清洗数据、数据工程、算法工程、运行挖掘算法、分析结果。 以用户为中心的处理模型 以用户为中心的处理模型着重对用户进行知识发现的整个过程的支持。 整个处理过程分为下面一些步骤:任务发现、数据发现、数据清洗、模型开发、数据分析、输出结果生成。 https://blog.51cto.com/u_16213724/9570367
12.干货来了!快速教你数据清洗的步骤及方法明月说数据快速教你数据清洗的步骤及方法 ?说起数据清洗,可能会有些小伙伴会觉得这一步可以忽略掉,但是!作为混迹在数据分析这一块多年的老油条,小编在此严肃地声明!资料清理是资料处理中最不能被忽略的部分,它是资料分析过程中不可缺少的一环,其结果的好坏直接关系到模型的效果。实际上,数据清洗通常要占用50%—80%的https://www.cnblogs.com/mingyueshuoshuju/p/15781335.html
13.数据处理方法有哪些,掌握这些技巧让你轻松应对数据分析问题1.预处理方法:当我们需要对采集到的原始数据进行处理时,可以采用预处理方法进行数据清洗、去噪、归一化、降噪等步骤,以便更好地应用数据处理技术。 2.数据挖掘方法:数据挖掘方法通常用于发现数据中的模式和规律,比如通过分类算法来识别一些分类问题,通过聚类算法进行数据分组等。 https://www.jiandaoyun.com/fe/sjclffynxz/