机器学习中的数据清洗与特征处理综述

随着美团交易规模的逐步增大,积累下来的业务数据和交易数据越来越多,这些数据是美团做为一个团购平台最宝贵的财富。通过对这些数据的分析和挖掘,不仅能给美团业务发展方向提供决策支持,也为业务的迭代指明了方向。目前在美团的团购系统中大量地应用到了机器学习和数据挖掘技术,例如个性化推荐、筛选排序、搜索排序、用户建模等等,为公司创造了巨大的价值。

本文主要介绍在美团的推荐与个性化团队实践中的数据清洗与特征挖掘方法。主要内容已经在内部公开课”机器学习InAction系列”讲过,本博客的内容主要是讲座内容的提炼和总结。

如上图所示是一个经典的机器学习问题框架图。数据清洗和特征挖掘的工作是在灰色框中框出的部分,即“数据清洗=>特征,标注数据生成=>模型学习=>模型应用”中的前两个步骤。灰色框中蓝色箭头对应的是离线处理部分。主要工作是-从原始数据,如文本、图像或者应用数据中清洗出特征数据和标注数据。-对清洗出的特征和标注数据进行处理,例如样本采样,样本调权,异常点去除,特征归一化处理,特征变化,特征组合等过程。最终生成的数据主要是供模型训练使用。

灰色框中绿色箭头对应的是在线处理的部分。所做的主要工作和离线处理的类似,主要的区别在于1.不需要清洗标注数据,只需要处理得到特征数据,在线模型使用特征数据预测出样本可能的标签。2.最终生成数据的用处,最终生成的数据主要用于模型的预测,而不是训练。在离线的处理部分,可以进行较多的实验和迭代,尝试不同的样本采样、样本权重、特征处理方法、特征组合方法等,最终得到一个最优的方法,在离线评估得到好的结果后,最终将确定的方案在线上使用。另外,由于在线和离线环境不同,存储数据、获取数据的方法存在较大的差异。例如离线数据获取可以将数据存储在Hadoop,批量地进行分析处理等操作,并且容忍一定的失败。而在线服务获取数据需要稳定、延时小等,可以将数据建入索引、存入KV存储系统等。后面在相应的部分会详细地介绍。

本文以点击下单率预测为例,结合实例来介绍如何进行数据清洗和特征处理。首先介绍下点击下单率预测任务,其业务目标是提高团购用户的用户体验,帮助用户更快更好地找到自己想买的单子。这个概念或者说目标看起来比较虚,我们需要将其转换成一个技术目标,便于度量和实现。最终确定的技术目标是点击下单率预估,去预测用户点击或者购买团购单的概率。我们将预测出来点击或者下单率高的单子排在前面,预测的越准确,用户在排序靠前的单子点击、下单的就越多,省去了用户反复翻页的开销,很快就能找到自己想要的单子。离线我们用常用的衡量排序结果的AUC指标,在线的我们通过ABTest来测试算法对下单率、用户转化率等指标的影响。

在确定好要使用哪些数据之后,我们需要对使用数据的可用性进行评估,包括数据的获取难度,数据的规模,数据的准确率,数据的覆盖率等,-数据获取难度例如获取用户id不难,但是获取用户年龄和性别较困难,因为用户注册或者购买时,这些并不是必填项。即使填了也不完全准确。这些特征可能是通过额外的预测模型预测的,那就存在着模型精度的问题。-数据覆盖率数据覆盖率也是一个重要的考量因素,例如距离特征,并不是所有用户的距离我们都能获取到。PC端的就没有距离,还有很多用户禁止使用它们的地理位置信息等。用户历史行为,只有老用户才会有行为。用户实时行为,如果用户刚打开app,还没有任何行为,同样面临着一个冷启动的问题。-数据的准确率单子质量,用户性别等,都会有准确率的问题。

Ok,在选定好要用的特征之后,我们需要考虑一个问题。就是这些数据从哪可以获取?只有获取了这些数据我们才能用上。否则,提一个不可能获取到的特征,获取不到,提了也是白提。下面就介绍下特征获取方案。-离线特征获取方案离线可以使用海量的数据,借助于分布式文件存储平台,例如HDFS等,使用例如MapReduce,Spark等处理工具来处理海量的数据等。

出于性能考虑。在粗排阶段,使用更基础的特征,数据直接建入索引。精排阶段,再使用一些个性化特征等。

特征数据只有在和标注数据合并之后,才能用来做为模型的训练。下面介绍下如何清洗标注数据。主要是数据采样和样本过滤。

数据采样,例如对于分类问题:选取正例,负例。对于回归问题,需要采集数据。对于采样得到的样本,根据需要,需要设定样本权重。当模型不能使用全部的数据来训练时,需要对数据进行采样,设定一定的采样率。采样的方法包括随机采样,固定比例采样等方法。

除了采样外,经常对样本还需要进行过滤,包括-1.结合业务情况进行数据的过滤,例如去除crawler抓取,spam,作弊等数据。-2.异常点检测,采用异常点检测算法对样本进行分析,常用的异常点检测算法包括-偏差检测,例如聚类,最近邻等。-基于统计的异常点检测算法例如极差,四分位数间距,均差,标准差等,这种方法适合于挖掘单变量的数值型数据。全距(Range),又称极差,是用来表示统计资料中的变异量数(measuresofvariation),其最大值与最小值之间的差距;四分位距通常是用来构建箱形图,以及对概率分布的简要图表概述。-基于距离的异常点检测算法,主要通过距离方法来检测异常点,将数据集中与大多数点之间距离大于某个阈值的点视为异常点,主要使用的距离度量方法有绝对距离(曼哈顿距离)、欧氏距离和马氏距离等方法。-基于密度的异常点检测算法,考察当前点周围密度,可以发现局部异常点,例如LOF算法

在分析完特征和标注的清洗方法之后,下面来具体介绍下特征的处理方法,先对特征进行分类,对于不同的特征应该有不同的处理方法。

根据不同的分类方法,可以将特征分为(1)Lowlevel特征和Highlevel特征。(2)稳定特征与动态特征。(3)二值特征、连续特征、枚举特征。

Lowlevel特征是较低级别的特征,主要是原始特征,不需要或者需要非常少的人工处理和干预,例如文本特征中的词向量特征,图像特征中的像素点,用户id,商品id等。Lowlevel特征一般维度比较高,不能用过于复杂的模型。Highlevel特征是经过较复杂的处理,结合部分业务逻辑或者规则、模型得到的特征,例如人工打分,模型打分等特征,可以用于较复杂的非线性模型。Lowlevel比较针对性,覆盖面小。长尾样本的预测值主要受highlevel特征影响。高频样本的预测值主要受lowlevel特征影响。

在对特征进行分类后,下面介绍下对特征常用的处理方法。包括1.特征归一化,离散化,缺省值处理。2.特征降维方法。3.特征选择方法等。

在介绍特征降维之前,先介绍下特征升维。在机器学习中,有一个VC维理论。根据VC维理论,VC维越高,打散能力越强,可容许的模型复杂度越高。在低维不可分的数据,映射到高维是可分。可以想想,给你一堆物品,人脑是如何对这些物品进行分类,依然是找出这些物品的一些特征,例如:颜色,形状,大小,触感等等,然后根据这些特征对物品做以归类,这其实就是一个先升维,后划分的过程。比如我们人脑识别香蕉。可能首先我们发现香蕉是黄色的。这是在颜色这个维度的一个切分。但是很多东西都是黄色的啊,例如哈密瓜。那么怎么区分香蕉和哈密瓜呢?我们发现香蕉形状是弯曲的。而哈密瓜是圆形的,那么我们就可以用形状来把香蕉和哈密瓜划分开了,即引入一个新维度:形状,来区分。这就是一个从“颜色”一维特征升维到二维特征的例子。

那问题来了,既然升维后模型能力能变强,那么是不是特征维度越高越好呢?为什么要进行特征降维&特征选择?主要是出于如下考虑:1.特征维数越高,模型越容易过拟合,此时更复杂的模型就不好用。2.相互独立的特征维数越高,在模型不变的情况下,在测试集上达到相同的效果表现所需要的训练样本的数目就越大。3.特征数量增加带来的训练、测试以及存储的开销都会增大。4.在某些模型中,例如基于距离计算的模型KMeans,KNN等模型,在进行距离计算时,维度过高会影响精度和性能。5.可视化分析的需要。在低维的情况下,例如二维,三维,我们可以把数据绘制出来,可视化地看到数据。当维度增高时,就难以绘制出来了。在机器学习中,有一个非常经典的维度灾难的概念。用来描述当空间维度增加时,分析和组织高维空间,因体积指数增加而遇到各种问题场景。例如,100个平均分布的点能把一个单位区间以每个点距离不超过0.01采样;而当维度增加到10后,如果以相邻点距离不超过0.01小方格采样单位超一单位超正方体,则需要10^20个采样点。

正是由于高维特征有如上描述的各种各样的问题,所以我们需要进行特征降维和特征选择等工作。特征降维常用的算法有PCA,LDA等。特征降维的目标是将高维空间中的数据集映射到低维空间数据,同时尽可能少地丢失信息,或者降维后的数据点尽可能地容易被区分-PCA算法通过协方差矩阵的特征值分解能够得到数据的主成分,以二维特征为例,两个特征之间可能存在线性关系(例如运动的时速和秒速度),这样就造成了第二维信息是冗余的。PCA的目标是发现这种特征之间的线性关系,并去除。

主要分为产生过程,评估过程,停止条件和验证过程。

其他如双向搜索(BDS,BidirectionalSearch),序列浮动选择(SequentialFloatingSelection)等

随机算法共同缺点:依赖随机因素,有实验结果难重现。

在发现特征出现异常时,我们会及时采取措施,对服务进行降级处理,并联系特征数据的提供方尽快修复。对于特征数据生成过程中缺乏监控的情况也会督促做好监控,在源头解决问题。

THE END
1.数据挖掘的数据清洗方法数据清洗是数据挖掘过程中的一个关键环节,它可以帮助提高数据的质量和可靠性,从而提高数据挖掘的效果。数据清洗可以减少数据错误的影响,提高数据分析的准确性和可靠性,从而提高数据挖掘的效果。 3.核心算法原理和具体操作步骤以及数学模型公式详细讲解 3.1 数据整理 https://blog.csdn.net/universsky2015/article/details/137324459
2.数据挖掘怎么清洗帆软数字化转型知识库数据挖掘需要进行数据清洗以确保数据质量、提高模型的准确性、减少噪声和冗余、统一数据格式、填补缺失值、删除重复数据。数据清洗是数据挖掘过程中的关键步骤之一,它对后续的数据分析和建模起到至关重要的作用。数据清洗可以通过以下步骤来实现:数据预处理、数据转化、数据集成、数据归约。数据预处理是数据清洗的第一步,https://www.fanruan.com/blog/article/574111/
3.数据挖掘的步骤包括什么首先,需要收集与待挖掘主题相关的数据。可能涉及从各种来源(如数据库、文件、网络等)获取数据,并将其清洗、整合到一个统一的格式中。 2、数据预处理 收集到的数据往往包含噪声、缺失值或异常值,需要进行预处理以保证数据的质量和一致性。预处理步骤包括数据清洗(删除或填充缺失值、处理异常值)、数据转换(将数据转换https://www.pxwy.cn/news-id-81213.html
4.数据清洗的概念常见问题及实践(数据清洗)数据清洗:确保数据分析准确性的关键步骤 数据已成为现代企业和组织决策的重要依据。然而,原始数据往往存在各种问题,如缺失值、错误值、重复数据等,这些问题会严重影响数据分析的准确性和可靠性。数据清洗作为数据预处理的关键环节,发现并纠正数据集中的错误和不一致信息,为后续的数据分析和挖掘打下坚实的基础。本文探讨数https://www.hypers.com/content/archives/5287
5.如何做采购数据分析步骤五:撰写采购数据分析报告,提出优化建议和决策支持。 关键词:如何做采购数据分析 在采购过程中,数据分析是至关重要的一环。通过对采购数据的深入分析,我们可以更好地了解供应链情况、优化采购流程、降低成本、提高效率。那么,如何做好采购数据分析呢?接下来我将从采购目标、数据收集、数据清洗、数据分析、数据可视化https://h.chanjet.com/ask/4f59bead0acf6.html
6.网络资源:数据挖掘实战2(航空公司客户价值分析)freq(最高频数)、mean(平均值),std(方差),min(最小值),50%(中位数),max(最大值)''' explore.to_excel(result_file)#导出结果 统计结果如下: 四、数据预处理 1、数据清洗 1、丢弃票价为空的记录 2、丢弃票价为0,但平均折扣率不为0,总飞行公里数大于0的记录。(脏数据) https://nonlinear.wtu.edu.cn/info/1117/1664.htm
7.数据处理的六步骤上述步骤提供了一个基本的框架,可帮助实现可靠的数据处理,在数字孪生技术栈中其他的技术可能根据具体的需求和应用进行进一步扩展和细化。 二、数据处理的六步骤 数据处理在数字孪生中扮演着重要的角色,它包括以下几个方面: 数据清洗 对采集到的数据进行清洗和预处理,包括去除噪声、填补缺失值、处理异常值等。清洗后的https://www.esensoft.com/industry-news/dx-33247.html
8.为了让数据变得可用,需要对数据进行三个步骤的处理,分别是()数据清洗 B、数据抽样 C、数据管理 D、数据分析 答案 查看答案 更多“为了让数据变得可用,需要对数据进行三个步骤的处理,分别是()”相关的问题 第1题 据《2015中国网络文学版权保护白皮书》披露,网络文学盗版的进化速度十分惊人。近年来,专业化盗版网络文学站点由大站转向小站,由在线转向下载,由电脑端转向手机端等https://www.educity.cn/souti/C4E11027.html
9.数据挖掘的流程包含哪些步骤?数据挖掘是从大量数据中挖掘出有用的信息和模式的过程。它涉及多个步骤,从数据收集到模型评估。以下是数据挖掘的常见流程步骤:理解业务目标:在进行数据挖掘之前,需要明确业务目标和问题。确定要解决的问题以及所需的结果有助于指导整个流程。数据收集:在 https://www.cda.cn/view/202981.html
10.数据分析流程包括哪些步骤在数据分析流程中,数据采集是一个关键步骤。数据采集涉及到数据源的选择、数据收集和数据清洗。数据源可以是数据库、文件、API等,需要根据具体情况进行选择。数据收集需要根据业务问题和目标,采用相应的方式进行收集,如爬虫、调查问卷等。数据清洗是指对原始数据进行预处理,包括去除重复数据、处理缺失值、异常值和噪声数据https://www.linkflowtech.com/news/1597
11.介绍KDD流程及其与知识提取数据挖掘的相关性数据挖掘中kdd的步骤G. H. John提出的螺旋处理过程模型阶段:定义问题、抽取数据、清洗数据、数据工程、算法工程、运行挖掘算法、分析结果。 以用户为中心的处理模型 以用户为中心的处理模型着重对用户进行知识发现的整个过程的支持。 整个处理过程分为下面一些步骤:任务发现、数据发现、数据清洗、模型开发、数据分析、输出结果生成。 https://blog.51cto.com/u_16213724/9570367
12.干货来了!快速教你数据清洗的步骤及方法明月说数据快速教你数据清洗的步骤及方法 ?说起数据清洗,可能会有些小伙伴会觉得这一步可以忽略掉,但是!作为混迹在数据分析这一块多年的老油条,小编在此严肃地声明!资料清理是资料处理中最不能被忽略的部分,它是资料分析过程中不可缺少的一环,其结果的好坏直接关系到模型的效果。实际上,数据清洗通常要占用50%—80%的https://www.cnblogs.com/mingyueshuoshuju/p/15781335.html
13.数据处理方法有哪些,掌握这些技巧让你轻松应对数据分析问题1.预处理方法:当我们需要对采集到的原始数据进行处理时,可以采用预处理方法进行数据清洗、去噪、归一化、降噪等步骤,以便更好地应用数据处理技术。 2.数据挖掘方法:数据挖掘方法通常用于发现数据中的模式和规律,比如通过分类算法来识别一些分类问题,通过聚类算法进行数据分组等。 https://www.jiandaoyun.com/fe/sjclffynxz/