数据预处理的方法有什么?白云君

删除变量:若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除。

定值填充:工程中常见用-9999进行替代

统计量填充:若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况进行填充。对于数据符合均匀分布,用该变量的均值填补缺失,对于数据存在倾斜分布的情况,采用中位数进行填补。

插值法填充:包括随机插值,多重差补法,热平台插补,拉格朗日插值,牛顿插值等

模型填充:使用回归、贝叶斯、随机森林、决策树等模型对缺失数据进行预测。

哑变量填充:若变量是离散型,且不同值较少,可转换成哑变量,例如性别SEX变量,存在male,fameal,NA三个不同的值,可将该列转换成IS_SEX_MALE,IS_SEX_FEMALE,IS_SEX_NA。若某个变量存在十几个不同的值,可根据每个值的频数,将频数较小的值归为一类'other',降低维度。此做法可最大化保留变量的信息。

简单统计分析:根据箱线图、各分位点判断是否存在异常,例如pandas的describe函数可以快速发现异常值。

3原则:若数据存在正态分布,偏离均值的3之外.通常定义范围内的点为离群点。

基于绝对离差中位数(MAD):这是一种稳健对抗离群数据的距离值方法,采用计算各观测值与平均值的距离总和的方法。放大了离群值的影响。

基于距离:通过定义对象之间的临近性度量,根据距离判断异常对象是否远离其他对象,缺点是计算复杂度较高,不适用于大数据集和存在不同密度区域的数据集

基于密度:离群点的局部密度显著低于大部分近邻点,适用于非均匀的数据集

基于聚类:利用聚类算法,丢弃远离其他簇的小簇。

根据异常点的数量和影响,考虑是否将该条记录删除,信息损失多

若对数据做了log-scale对数变换后消除了异常值,则此方法生效,且不损失信息

平均值或中位数替代异常点,简单高效,信息的损失较少

在训练树模型时,树模型对离群点的鲁棒性较高,无信息损失,不影响模型训练效果

噪声是变量的随机误差和方差,是观测点和真实点之间的误差,即。通常的处理办法:对数据进行分箱操作,等频或等宽分箱,然后用每个箱的平均数,中位数或者边界值(不同数据分布,处理方法不同)代替箱中所有的数,起到平滑数据的作用。另外一种做法是,建立该变量和预测变量的回归模型,根据回归系数和预测变量,反解出自变量的近似值。实体识别问题:例如,数据分析者或计算机如何才能确信一个数据库中的customer_id和另一个数据库中的cust_number指的是同一实体通常,数据库和数据仓库有元数据——关于数据的数据。这种元数据可以帮助避免模式集成中的错误。

数据值的冲突和处理:不同数据源,在统一合并时,保持规范化,去重。

数据分析任务多半涉及数据集成。数据集成将多个数据源中的数据结合成、存放在一个一致的数据存储,如数据仓库中。这些源可能包括多个数据库、数据方或一般文件。

实体识别问题:例如,数据分析者或计算机如何才能确信一个数据库中的customer_id和另一个数据库中的cust_number指的是同一实体通常,数据库和数据仓库有元数据——关于数据的数据。这种元数据可以帮助避免模式集成中的错误。

属性子集选择:目标是找出最小属性集,使得数据类的概率分布尽可能地接近使用所有属性的原分布。在压缩的属性集上挖掘还有其它的优点。它减少了出现在发现模式上的属性的数目,使得模式更易于理解。

逐步向前选择:该过程由空属性集开始,选择原属性集中最好的属性,并将它添加到该集合中。在其后的每一次迭代,将原属性集剩下的属性中的最好的属性添加到该集合中。

逐步向后删除:该过程由整个属性集开始。在每一步,删除掉尚在属性集中的最坏属性。

向前选择和向后删除的结合:向前选择和向后删除方法可以结合在一起,每一步选择一个最好的属性,并在剩余属性中删除一个最坏的属性。

pythonscikit-learn中的递归特征消除算法Recursivefeatureelimination(RFE),就是利用这样的思想进行特征子集筛选的,一般考虑建立SVM或回归模型。

回归系数:训练线性回归或逻辑回归,提取每个变量的表决系数,进行重要性排序。

树模型的Gini指数:训练决策树模型,提取每个变量的重要度,即Gini指数进行排序。

Lasso正则化:训练回归模型时,加入L1正则化参数,将特征向量稀疏化。

IV指标:风控模型中,通常求解每个变量的IV值,来定义变量的重要度,一般将阀值设定在0.02以上。

维度变换是将现有数据降低到更小的维度,尽量保证数据信息的完整性。楼主将介绍常用的几种有损失的维度变换方法,将大大地提高实践中建模的效率

主成分分析(PCA)和因子分析(FA):PCA通过空间映射的方式,将当前维度映射到更低的维度,使得每个变量在新空间的方差最大。FA则是找到当前特征向量的公因子(维度更小),用公因子的线性组合来描述当前的特征向量。

奇异值分解(SVD):SVD的降维可解释性较低,且计算量比PCA大,一般用在稀疏矩阵上降维,例如图片压缩,推荐系统。

聚类:将某一类具有相似性的特征聚到单个变量,从而大大降低维度。

线性组合:将多个变量做线性回归,根据每个变量的表决系数,赋予变量权重,可将该类变量根据权重组合成一个变量。

流行学习:流行学习中一些复杂的非线性方法,可参考skearn:LLEExample

数据变换包括对数据进行规范化,离散化,稀疏化处理,达到适用于挖掘的目的。

规范化处理:数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,便于进行综合分析。特别是基于距离的挖掘方法,聚类,KNN,SVM一定要做规范化处理。

最大-最小规范化:将数据映射到[0,1]区间,

Z-Score标准化:处理后的数据均值为0,方差为1,

2、离散化处理:数据离散化是指将连续的数据进行分段,使其变为一段段离散化的区间。分段的原则有基于等距离、等频率或优化的方法。数据离散化的原因主要有以下几点:

离散化的特征相对于连续型特征更易理解。

可以有效的克服数据中隐藏的缺陷,使模型结果更加稳定。

等频法:使得每个箱中的样本数量相等,例如总样本n=100,分成k=5个箱,则分箱原则是保证落入每个箱的样本量=20。

等宽法:使得属性的箱宽度相等,例如年龄变量(0-100之间),可分成[0,20],[20,40],[40,60],[60,80],[80,100]五个等宽的箱。

聚类法:根据聚类出来的簇,每个簇中的数据为一个箱,簇的数量模型给定。

3、稀疏化处理:针对离散型且标称变量,无法进行有序的LabelEncoder时,通常考虑将变量做0,1哑变量的稀疏化处理,例如动物类型变量中含有猫,狗,猪,羊四个不同值,将该变量转换成is_猪,is_猫,is_狗,is_羊四个哑变量。若是变量的不同值较多,则根据频数,将出现次数较少的值统一归为一类'rare'。稀疏化处理既有利于模型快速收敛,又能提升模型的抗噪能力。

THE END
1.数据预处理(DataPreprocessing):在数据分析前对原始数据进行清洗数据预处理是数据分析、数据挖掘以及机器学习等领域中的一个关键步骤,它指的是在将数据输入到模型或算法之前,对数据进行的一系列必要处理操作。这些操作旨在提高数据的质量、一致性和适用性,从而确保后续分析和建模的准确性和有效性。以下是对数据预处理的详细解释,包括其定义、目的、常见方法以及一个实例形象的讲解。https://www.55kaifa.com/ruanjiankaifacihuishuyu/2667.html
2.大数据预处理与就业趋势数据处理的工作时间占据了整个数据分析项目的70%以上。因此,数据的质量直接决定了分析模型的准确性。那么,数据预处理的方法有哪些呢?比如数据清洗、数据集成、数据规约、数据变换等,其中最常用到的是数据清洗与数据集成,下面小编将来详细介绍一下这2种方法。 https://blog.csdn.net/weixin_51689029/article/details/128320192
3.数据预处理的方法有哪些@数据处理与分析数据预处理的方法有哪些 数据处理与分析 数据预处理是数据分析中至关重要的一步,它旨在提高数据的质量和可用性,为后续的建模和分析打下坚实基础。以下是数据预处理的一些主要方法: 1. 数据清洗 数据清洗是数据预处理的第一步,它主要处理数据中的错误、缺失值和异常值。具体方法包括: 填充缺失值:https://agents.baidu.com/content/question/0eedb8f1ec2faf175a04a13f
4.数据预处理的方法有哪些数据预处理在数据挖掘中至关重要,旨在提升原始数据的品质与可用性。其主要任务涵盖去除冗余、数据清洗、格式转换,以及处理异常值。此外,通过消除变量间的相关性,数据预处理增强了数据的代表性和可解释性,为后续的数据分析和挖掘奠定坚实基础。 在数据预处理缺失值时,通常有两种策略:一是删除缺失值,用新数据替换;二是https://www.yueshu.com.cn/posts/Data-preprocessing%20-method
5.AI人工智能预处理数据的方法和技术有哪些?腾讯云开发者社区在人工智能(Artificial Intelligence,简称AI)领域中,数据预处理是非常重要的一环。它是在将数据输入到模型之前对数据进行处理和清洗的过程。数据预处理可以提高模型的准确性、可靠性和可解释性。 本文将详细介绍AI人工智能预处理数据的方法和技术。 数据清洗 https://cloud.tencent.com/developer/article/2286934
6.数据处理方法有哪些,掌握这些技巧让你轻松应对数据分析问题1.预处理方法:这种方法主要是在数据采集之后进行的,目的是减少数据所包含的噪声成分和冗余信息,提高结果的准确性。预处理方法一般包括数据清洗、数据采样、数据变换等。 2.数据挖掘方法:数据挖掘是从大量数据中发现隐藏在其中的有价值的信息的过程。数据挖掘方法包括分类、聚类、关联规则挖掘、异常检测等。 https://www.jiandaoyun.com/fe/sjclffynxz/
7.大数据预处理的方法有哪些?初级会计职称大数据预处理的方法有哪些? 摘要:本文介绍了大数据预处理的常用方法,包括数据清洗、数据转换、特征选择、数据集成、数据降维、数据采样、数据平滑和数据聚合。这些方法可以帮助数据分析人员消除误差和偏差,得到更准确的分析结果。 本文资料:【2024年初级会计实务小册子-知识点+考法】【2024年初级会计经济法基础小册子-https://www.educity.cn/cjkj/5263163.html
8.Python时间序列数据的预处理方法总结python这篇文章主要介绍了Python时间序列数据的预处理方法总结,时间序列数据随处可见,要进行时间序列分析,我们必须先对数据进行预处理。时间序列预处理技术对数据建模的准确性有重大影响https://www.jb51.net/article/257206.htm
9.以下属于数据预处理的方法有()。A数据清洗B数据变换C数据归约以下属于数据预处理的方法有( )。 A、数据清洗 B、数据变换 C、数据归约 D、数据标注 点击查看答案http://www.ppkao.com/wangke/daan/fa76ab52602740b2913682874fcd17aa
10.数据分析中的数据预处理包括哪些步骤数据清洗是数据预处理的第一步,主要是为了处理原始数据中存在的错误、缺失、重复、异常等问题。具体步骤如下: 1.去重:检查数据集中是否存在重复的数据记录,如有重复,删除其中的一条或多条记录。 2.处理缺失值:数据集中可能存在某些数据缺失的情况,可以通过删除缺失值、替换缺失值或使用插值方法进行处理。 https://www.linkflowtech.com/news/1073
11.几种简单的文本数据预处理方法和上一种方法的区别是,'armour-like' 被识别成两个词 'armour', 'like','"What's' 变成了 'What', 's' importre words=re.split(r'\W+',text)print(words[:100]) 3. 用空格分隔并去掉标点: string 里的 string.punctuation 可以知道都有哪些算是标点符号, https://www.jianshu.com/p/57bd77950d33
12.河北省职业院校技能大赛2、大数据项目分析流程分为1.业务理解2.数据预处理3.报告撰写4.数据收集5.数据分析与挖掘。以下排序正确的是? A.13245 B.14253 C.14523 D.14352 3、以下哪个选项为数据预处理最常见的方法? A.数据集成 B.数据变换 C.数据清理 D.数据规约 4、以下哪个选项不属于大数据消费者洞察的特点? http://hbszjs.hebtu.edu.cn/jnds/newsContent?newsId=2616&colId=7
13.一种对管道测绘内检测IMU数据预处理的优化方法专利本发明涉及管道测绘内检测装置的IMU子系统输出的原始数据的预处理方法,具体地说是IMU原始输出数据在进行离线处理时,首先需要进行的时域去噪方法。 背景技术 1.管道测绘内检测 管道内检测装置(PIG)在管道内运动过程中,可以对管道缺陷或变形情况进行测量。管道和管道内检测系统对管道相关的对象有定位的需求,需要实施测绘工https://www.tianyancha.com/patent/d76fb0f3849e5ca8a8f9cbd47bfd7784
14.基于时频空间域的运动想象脑电信号特征提取方法研究3 分析方法 3.1 数据预处理 实验中,左右手提示出现在3~9 s,只需选用时间在3~9 s的数据。由于电极Cz的位置与运动想象功能区没有太大相关性,处理时只选用C3和C4电极记录的数据进行特征提取。 研究表明,大脑在想象或实施左右手运动时会显著改变某些频段成分(如μ节律、β节律)的功率谱强弱,这一现象被称为事https://www.biomedeng.cn/article/10.7507/1001-5515.20140180
15.一种阿尔兹海默症的认知及脑影像数据整合评估方法与流程8.步骤i:获取受测者的认知功能多领域筛查评估的行为学数据; 9.步骤ii:分析多模态磁共振成像数据,包括以下步骤: 10.1.基于定点分析方法对受测者的海马体积及形状进行量化分析, 11.2.计算认知相关脑功能网络内及脑功能网络间的功能连接 12.2.1静息态功能性磁共振成像数据预处理,纠正原始静息态功能性磁共振成像数据中https://www.xjishu.com/zhuanli/05/202111017552.html
16.spss数据预处理包括哪些内容spss数据预处理怎么做在进行数据分析时,数据预处理是一个至关重要的步骤。SPSS软件作为一款广泛应用的统计分析软件,提供了一系列强大的数据预处理功能。本文将详细介绍SPSS数据预处理包括哪些内容,以及SPSS数据预处理怎么做的内容,帮助您更好地利用软件功能,提高数据分析的准确性和效率。 一、 SPSS数据预处理包括哪些内容 在SPSS中,数据预https://spss.mairuan.com/jiqiao/spss-djxklq.html