数据挖掘模型有哪些?Worktile社区

数据挖掘模型有:1.回归分析模型;2.决策树模型;3.人工神经网络模型;4.贝叶斯网络;5.支持向量机;6.聚类模型;7.关联模型;8.异常检测。其中,决策树模型、人工神经网络模型、贝叶斯网络和支持向量机,均属于分类模型。

回归分析,确定预测属性与其他变量间相互依赖的定量关系。包括:线性回归、非线性回归、Logistic回归、岭回归、主成分回归、偏最小二乘回归等模型。其中,线性回归模型是数据挖掘中最简单的一种模型,适用范围非常广泛。

线性回归多应用于研究对象是连续型数据的情况。简单来说,它希望被研究的对象数据是一个连续变化的数值,例如收入或者是销售额,价格等等,而不是跳跃变化的数据如年龄,工龄等等。此方法可以用于研究自变量与因变量之间的关系,并分析自变量对于因变量的解释和影响程度。

决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。

主要的决策树算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法等。它们在选择测试属性采用的技术、生成的决策树的结构、剪枝的方法以及时刻,能否处理大数据集等方面都有各自的不同之处。

人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在这种模型中,大量的节点(称”神经元”)之间相互联接构成网络,即”神经网络”,以达到处理信息的目的。神经网络通常需要进行训练,训练的过程就是网络进行学习的过程。训练改变了网络节点的连接权的值使其具有分类的功能,经过训练的网络就可用于对象的识别。

贝叶斯网络又称信度网络,是Bayes方法的扩展,是目前不确定知识表达和推理领域最有效的理论模型之一。主要是利用Bayes定理来预测一个未知类别的样本属于各个类别的可能性,选择其中可能性最大的一个类别作为该样本的最终类别。

由于贝叶斯定理的成立本身需要一个很强的条件独立性假设前提,而此假设在实际情况中经常是不成立的,因而其分类准确性就会下降。为此就出现了许多降低独立性假设的贝叶斯分类算法,如TAN(TreeAugmentedNativeBayes)算法,它是在贝叶斯网络结构的基础上增加属性对之间的关联来实现的。

支持向量机(SVM,SupportVectorMachine)是一种通过某种非线性映射,把低维的非线性可分转化为高维的线性可分,在高维空间进行线性分析的算法。

支持向量机的最大特点是根据结构风险最小化准则,以最大化分类间隔构造优异分类超平面来提高学习机的泛化能力,较好地解决了非线性、高维数、局部极小点等问题。对于分类问题,支持向量机算法根据区域中的样本计算该区域的决策曲面,由此确定该区域中未知样本的类别。

常用到的聚类算法:K均值、DBSCAN算法。它可以将数据对象聚成多个类。

Apriori算法是关联模型的常用算法。主要是用来发现描述数据对象间强关联特征的模式。建模的过程就是通过用户指定的最小支持度和最小置信度阈值来寻找强关联规则的过程。

目标是检测出与大多数对象不同的对象。异常对象也被称为离群点,因为在数据的散布图中,他们远离其他数据对象,异常对象的属性值显著地偏离预期的或常见的属性值。在人类社会、自然界以及数据集领域,大部分事件和对象,都是平凡的。然而,不平常、不平凡往往有着巨大的实际意义,异常检测就是找出这些不平常、不平凡。异常检测技术常被应用于信用卡的欺诈检测、对网络攻击的入侵检测、自然灾害研究、公共卫生医疗等领域。

延伸阅读

数据挖掘(DataMining,DM)又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的,先前未知的并有潜在价值的信息的非平凡过程。数据挖掘吸纳了统计学、模式识别、数据库、数据仓库、可视化、高性能计算等技术。

THE END
1.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn“数据挖掘算法”是创建数据挖掘模型的机制。为了创建模型,算法将首先分析一组数据并查找特定模式和趋势。算法使用此分析的结果来定义挖掘模型的参数。然后,这些参数应用于整个数据集,以便提取可行模式和详细统计信息。 算法创建的挖掘模型可以采用多种形式,这包括: https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
2.数据挖掘常用模型有哪些帆软数字化转型知识库二、回归模型 回归模型用于预测连续变量,是数据挖掘中的另一重要模型。常见的回归模型有线性回归、岭回归、LASSO回归、多项式回归和逻辑回归等。 线性回归是最基础的回归模型,通过拟合数据找到自变量和因变量之间的线性关系。线性回归简单易懂,但假设自变量和因变量之间的关系是线性的,限制了其应用场景。岭回归和LASSO回归https://www.fanruan.com/blog/article/597126/
3.常见的数据挖掘模型类型常见的数据挖掘模型类型 常见的数据挖掘模型类型包括: 1. 分类模型:用于将数据分为不同的类别或标签,常见的分类模型包括决策树、支持向量机(SVM)、逻辑回归等。 2. 回归模型:用于预测数值型的目标变量,常见的回归模型包括线性回归、多项式回归、岭回归等。 3. 聚类模型:用于将数据分成不同的群组,常见的聚类模型https://wenku.baidu.com/view/8fd5396c1ae8b8f67c1cfad6195f312b3169eb8a.html
4.基础知识(八)模型&数据挖掘知识——常见模型介绍一、线性回归模型 线性回归模型是利用数理统计中的回归分析,来确定两个或两个以上变量间相互依赖的定量关系的一种统计分析方法。 表达形式:y=w'x+e,w'为参数行列式,e为随机误差 Q1:在线性回归模型中对随机误差做出的假设有哪些? 1.随机误差的假设 https://www.jianshu.com/p/ba9ee0c0e59d
5.数据挖掘中最常用的算法模型有哪些?在数据挖掘领域中,有许多常用的算法模型被广泛应用于数据分析、预测和模式识别等任务。以下是一些最常见的算法模型: 决策树:决策树是一种基于树状结构的分类和回归方法。它通过对数据进行逐步分割来构建一棵树,每个节点代表一个特征变量,分支代表该特征的取值,叶子节点代表分类或回归结果。 https://www.cda.cn/view/204248.html
6.人类疾病动物模型资源动态(2023年第1期,总第5期)使用两点式溶血卵磷脂(LPC)注射的脱髓鞘小鼠模型,发现在严重脱髓鞘时,小胶质细胞自噬-溶酶体通路过度激活,导致脂滴积聚和功能失调的促炎小胶质细胞状态,最终导致髓鞘碎片清除失败和空间学习障碍。遗传方法和药理学调节相关数据表明,通过小胶质细胞Atg5缺陷小鼠或脑内BAF A1给药,对小胶质细胞的过度自噬-溶酶体激活进行分https://www.namr.org.cn/Detail/22_108
7.常见的数据归一化方法及其对比在数据挖掘算法中,数据预处理流程常常包括数据清洗、数据变换和数据归一化等步骤。数据归一化是其中一个非常重要的步骤,它可以有效地提高数据挖掘模型的性能和准确度。在数据挖掘过程中,通常会使用各种归一化方法对数据进行预处理,以确保数据质量和挖掘效果。 https://wenku.csdn.net/column/7fikb2v89b
8.数据挖掘——模型挖掘之分类进行模型构建?模型评价模型评价的目的之一,就是从上一步的模型中自动找出一个最好模型,另外就是根据业务对模型进行解释和应用3. 常见的数据挖掘建模工具 SAS SPSS SQL PYTHON分类与预测、聚类分析、关联规则、时序模式、偏差检验、智能推荐等方法,帮助企业提取数据中蕴含的商业价值,提高企业的竞争力。 2.数据挖掘https://www.pianshen.com/article/15621624011/
9.一篇文章搞懂数据仓库:四种常见数据模型(维度模型范式模型等)二、四种常见模型 2.1 维度模型 维度建模按数据组织类型划分可分为星型模型、雪花模型、星座模型。 Kimball老爷爷维度建模四个步骤: 选择业务处理过程 > 定义粒度 > 选择维度 > 确定事实 2.1.1 星型模型 星型模型主要是维表和事实表,以事实表为中心,所有维度直接关联在事实表上,呈星型分布。 https://developer.aliyun.com/article/931843
10.进销存数据如何分析?4个维度带你快速了解!——九数云BI3.数据挖掘和模型建立 在进行进销存数据分析的过程中,可以使用数据挖掘技术来发现潜在的规律和趋势。通过建立模型和算法,可以对未来的销售趋势、市场需求等进行预测,为企业的决策提供依据。例如,可以通过对历史销售数据的分析,预测销售季节性波动和产品的生命周期。 https://www.jiushuyun.com/hywz/9373.html
11.大数据开发:数仓建模常见数据模型腾讯云开发者社区在数据仓库搭建的过程当中,根据需求合理地选择数据模型,是非常关键的一个环节。对于数仓建模,很多人说不就是建表吗,哪有那么复杂,事实上,这是非常错误的思想。今天的大数据开发分享,我们来聊聊数仓建模常见的几种数据模型。 目前来说,市场上主流的数据建模,主要是四种类型:维度模型、范式模型、Data Vault模型,以及Anchttps://cloud.tencent.com/developer/article/1780642
12.数据挖掘的四种基本方法解读需求要考虑专家、工作人员的意见;数据可从业务层的数据库中提取、抽样;在计算机分析技术下,可能给出不同模型, 企业需要选择最优模型;数据挖掘只是辅助的决策工具, 如何解读模型也是重要的任务;根据挖掘结果进行商业部署, 如零售商根据客户习惯决定进货量、进货时间、具体选址等。https://www.dongao.com/cma/zy/202406204447292.html
13.科学网—[转载]基于博弈论和拍卖的数据定价综述对基于博弈论和拍卖的数据定价进行了研究,调查了该分类下不同的数据定价模型,并将其分为不同的类型,综合比较各个模型的优劣。将常见的数据交易市场进行分类,指出不同的数据交易框架在实现过程中的优点和挑战。对已有的数据定价研究进行总结,以便数据定价领域的学者能更轻松地掌握该领域的研究现状及重点。https://blog.sciencenet.cn/blog-3472670-1302721.html
14.数据挖掘模式(精选十篇)物联网的数据挖掘模式要依据物联网环境而定, 由于物联网数据的复杂性和物物关联等特性不同, 这些都将导致物联网的建模方式会和传统方式有很大得差异。基于云计算的物联网数据挖掘模式就是先分析物联网的数据特性, 然后再提出适合的解决方案跟正确的思路, 再总结出合适的数学模型。物联网的数据的特点如下:关联https://www.360wenmi.com/f/cnkey4fh5zbg.html