现如今会上如果不说两句大数据、云计算、区块链、边缘计算等名词,就感觉被时代抛弃一样。那今天我们主要为大家讲解下什么是大数据;在做大数据可视化时,有哪些常见得到数据分析模型。
那么什么是大数据呢?
大数据有哪些特征呢?
大数据处理流程是怎么样的呢?
一般的大数据处理流程都有以下几个过程:数据采集、数据存储、数据处理、数据展现。如下图所示。
简而言之,大数据就是数据量非常大、数据种类繁多、无法用常规归类方法应用计算的数据集成。
有了这么多的大数据,我们如何使用呢?
通过不同渠道采集来的数据,经过对数据清洗后,那接下来就是应用大数据的时候了。根据我们的需求目标定义不同的数据模型,通过数据模型对数据进行筛选,获得我们需要的数据。那么在我们日常工作中有哪些常用的大数据模型呢?今天我们主要分析几个常用的模型做简单的介绍。供大家参考。
1、行为事件分析
行为事件分析法:顾名思义主要通过事件的行为来分析,获得有效的数据。目前主要是用来来研究某行为事件的发生对企业组织价值的影响以及影响程度。那么我们的企业可以借此来追踪或记录的用户行为或业务过程。比如用户注册、浏览产品详情页、购买、提现等,通过研究与事件发生关联的所有因素来挖掘用户行为事件背后的原因、交互影响等。
2、漏斗分析模型
漏斗分析是一套流程分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。其实企业经营中经常使用到,最简单的应该是我们销售部门的销售项目漏斗。销售管理者通过项目漏斗来分析接下来重点项目跟进和赢单概率。销售漏斗也是一种数据分析模型。
3、留存分析模型
留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。简要的说就是您举办一场活动,邀请了1000人参会,在参会过程中陆续有人对这个活动不感兴趣了,就中途退出了活动现场,还有部分用户坚持下来了,那么坚持下来的用户一定是您的目标客户吗?那么也未必对吧。我们就需要一个工具来识别留存下来的用户哪些才是真正的用户。这就是用来衡量产品对用户价值高低的重要方法。留存分析可以帮助回答以下问题:
4、分布分析模型
分布分析是用户在特定指标下的频次、总额等的归类展现。它可以展现出单用户对产品的依赖程度,分析客户在不同地区、不同时段所购买的不同类型的产品数量、购买频次等,帮助运营人员了解当前的客户状态,以及客户的运转情况。如订单金额(100以下区间、100元-200元区间、200元以上区间等)、购买次数(5次以下、5-10次、10以上)等用户的分布情况。
5、点击分析模型
即应用一种特殊高亮的颜色形式,显示页面或页面组(结构相同的页面,如商品详情页、官网博客等)区域中不同元素点击密度的图示。包括元素被点击的次数、占比、发生点击的用户列表、按钮的当前与历史内容等因素。
点击图是点击分析方法的效果呈现。点击分析具有分析过程高效、灵活、易用,效果直观的特点。点击分析采用可视化的设计思想与架构,简洁直观的操作方式,直观呈现访客热衷的区域,帮助运营人员或管理者评估网页的设计的科学性。
6、用户行为路径分析模型
用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。
7、用户分群分析模型
8、属性分析模型
属性分析主要价值在:丰富用户画像维度,让用户行为洞察粒度更细致。科学的属性分析方法,可以对于所有类型的属性都可以将“去重数”作为分析指标,对于数值类型的属性可以将“总和”“均值”“最大值”“最小值”作为分析指标;可以添加多个维度,没有维度时无法展示图形,数字类型的维度可以自定义区间,方便进行更加精细化的分析。
常用的大数据分析模型有哪些?中琛魔方大数据(www.zcmorefun.com)表示模型只是前人总结的方式和方法,在实际工作中对解决问题起着指导性作用,但不可否认的是,具体的问题要具体分析,要根据不同的情况作出不同的改进,重要的还是更多的实践!