数据挖掘模型和挖掘步骤技术方案

随着中国电信的改革重组,中国通信业取得了跨越式的发展,成为国民经济中发展速度最快的行业之一,中国通信业总规模现已在世界排名第一。与此同时,中国通信市场竞争也日趋激烈。通信运营商的经营观念逐渐从"技术质量第一"向"服务客户第一"转化。以前的营销模式已经无法满足客户的多样化、层次化、个性化的需求。长期以来,通信单位大量详尽的业务数据也只是被简单地应用在各种业务系统中,没有被更有效地开发利用。如何利用这些数据进一步拓宽通信业务,促进通信业务发展,从而为通信业提供决策支持服务,已经成为各个通信单位的当务之急。

客户细分模型和挖掘算法选择

构建客户分类模型需要用到第2章所介绍的一些技术。其中聚类技术就是其中之一。在前面的章节中我们曾了解到聚类和分类有着很大的区别:分类时,我们事先选择一些属性作为分类标准,通信企业总是会将重要的、有影响力的属性作为分类的依据;而在实际应用当中,通信企业事先根本不知道哪些属性会起到作用。而找到那些起关键作用的属性是聚类技术的任务之一。在通信客户分析中,聚类分析能够帮助我们发现特征迥异的不同客户群和对客户分类起关键作用的指标变量,并辅助运营商对各客户类别的特征进行深刻观察。通信客户从营销属性方面分为三类:普通客户、价值客户和黄金客户,其中普通客户消费行为有较大的随机性,分布较广,规律难寻,比较适于聚类分析。

本数据挖掘实例采用通话行为、数据业务使用情况等作为客户分类变量,把通信行为相似的人群聚为一组。数据挖掘方法论选用CRISP-DM(Cross-IndustryProcessforDataMining)过程模型。即交叉行业数据挖掘过程标准。它从数据挖掘技术应用的角度来划分挖掘任务,将数据挖掘技术和实际应用紧密结合。CRISP-DM过程模型的主要步骤有商业理解、数据理解、数据准备、建立模型、数据挖掘、评价和实施以及结果发布,如图3-9所示。该过程的各个环节按顺序进行,但需要不断地循环往复进行数据探索和模型的调优。这里为了简化说明问题,先不考虑循环往复的探索和调优过程,直接顺序考察各个环节。

数据挖掘模型和挖掘步骤

在各种硬件条件和软件条件都具备的情况下,就可以开始进行挖掘的工作了。

1.数据准备

数据准备过程如下:

(1)确定项目目标,制定挖掘计划。

(2)分析变量的获取。

(3)数据收集和获取。(4)数据集成。

依据CRISP-DM流程,第一要确定项目目标,之后制定挖掘计划。首先必须明确项目的商业目标,这个目标应该是适于用选取的聚类分析方法来达到的。所定义的客户细分的商业目标是"对某地方数十万普通客户,从客户行为的角度进行客户分类,以了解不同客户群的消费行为特征,为发展新业务、原有客户挽留、对其他通信公司用户争夺的针对性策略的制订提供依据,并实现企业稳定现有客户量、提高客户增长量的战略目标"。

客户的消费行为和需求通过调查问卷以及访谈的方式来实现。

客户的通信行为以及需求特征类别见表3-1。

表3-1客户行为特征信息表

客户的通信行为

客户的需求特征类别

短消息使用次数

移动梦网使用次数

GPRS数据流量

方便性及信息实时性的需求

IP长途使用次数

优惠时段通话次数

套餐定制和使用次数

拨打10086次数

对资费的敏感程度

本地、长途、漫游呼叫时长

本地、长途、漫游呼叫次数

工作/休息时段、优惠/非优惠时段)

呼叫类型(主叫、被叫、呼叫转移)

对通话的多层次需求

服务种类

对个性化服务的需求程度

基于客户需求和上述行为特征信息表,定义了几组细分变量,d_代表时常,t_代表频率,见表3-2。在这里只列出通话形式和通话比例表。

表3-2细分变量表(简表)

通话形式

市话

d_local

t_local

省内长途

d_toll_InProvince

t_toll_InProvince

跨省长途

d_toll_BetweenProvince

t_toll_BetweenProvince

国际长途

d_toll_htm

t_toll_htm

通话比例

网内通话

d_mob_Ttl

t_mob_Ttl

联通通话

d_uni_Ttl

t_uni_Ttl

小灵通通话

d_phs_Ttl

t_phs_Ttl

d_fix_Ttl

t_fix_Ttl

2.数据准备

数据准备包括所有从原始的未加工的数据构造最终分析数据集的活动,是数据挖掘过程中最耗时的环节,甚至要占据整个数据挖掘项目一半以上的工作量。数据准备工作的流程如图3-11所示。

3.建立模型

在生成最终的数据集后,就可以在此基础上建立模型来进行聚类分析了。建立模型阶段主要是选择和应用各种建模技术,同时对它们的参数进行校准以达到最优值。在明确建模技术和算法后需要确定模型参数和输入变量。模型参数包括类的个数和最大迭代步数等。

不同的技术方案产生的模型结果有很大不同,而且模型结果的可理解性也存在较大差异。另外,对结果的分析和描述也很关键,不恰当的描述会造成误导。需要指出的是,不同的商业问题和不同的数据分布属性会影响模型建立与调整的策略,而且在建模过程中还会使用多种近似算法来简化模型的优化过程。因此还需要业务专家参与调整策略的制定,以避免不适当的优化造成业务信息丢失。

建立模型是一个螺旋上升,不断优化的过程,在每一次聚类结束后,需要判断聚类结果在业务上是否有意义,其各群特征是否明显。如果结果不理想,则需要调整聚类模型,对模型进行优化,称之为聚类优化。聚类优化可通过调整聚类个数及调整聚类变量输入来实现,也可以通过多次运行,选择满意的结果。通常可以依据以下原则判断聚类结果是否理想:类间特征差异是否明显;群内特征是否相似;聚类结果是否易于管理及是否具有业务指导意义。

4.模型评估

通过上面的处理,就会得到一系列的分析结果和模式,它们是对目标问题多侧面的描述,这时需要对它们进行验证和评价,以得到合理的,完备的决策信息。对产生的模型结果需要进行对比验证、准确度验证、支持度验证等检验以确定模型的价值。在这个阶段需要引入更多层面和背景的用户进行测试和验证,通过对几种模型的综合比较,产生最后的优化模型。

模型评估阶段需要对数据挖掘过程进行一次全面的回顾,从而决定是否存在重要的因素或任务由于某些原因而被忽视,此阶段关键目的是决定是否还存在一些重要的商业问题仍未得到充分的考虑。验证模型是处理过程中的关键步骤,可以确定是否成功地进行了前面的步骤。模型的验证需要利用未参与建模的数据进行,这样才能得到比较准确的结果。可以采用的方法有直接使用原来建立模型的样本数据进行检验,或另找一批数据对其进行检验,也可以在实际运行中取出新的数据进行检验。检验的方法是对已知客户状态的数据利用模型进行挖掘,并将挖掘结果与实际情况进行比较。在此步骤中若发现模型不够优化,还需要回到前面的步骤进行调整。

THE END
1.数据挖掘概念(AnalysisServices与以下关系图的突出显示相同,数据挖掘过程的第一步就是明确定义业务问题,并考虑解答该问题的方法。 该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: 您在查找什么?您要尝试找到什么类型的关系? https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.什么是数据挖掘的原理?从理论到实践全面解析数据挖掘7. 概念层次结构生成对类别变量进行概念层次结构生成也是数据预处理的一部分,这有助于提高数据挖掘的成功率。在数据挖掘特征选择过程中,哪些算法或技术被证明最有效?在数据挖掘特征选择过程中,多种算法和技术被证明是有效的。以下是一些主要的特征选择方法及其应用:1. 单变量特征选择使用基于统计量的方法来选择最优https://baijiahao.baidu.com/s?id=1810229673671783183&wfr=spider&for=pc
3.python数据挖掘算法的过程详解python这篇文章主要介绍了python 数据挖掘算法,首先给大家介绍了数据挖掘的过程,基于sklearn主要的算法模型讲解,给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下+ 目录 1、首先简述数据挖掘的过程 第一步:数据选择 可以通过业务原始数据、公开的数据集、也可通过爬虫的方式获取。 第二https://www.jb51.net/article/238548.htm
4.数据分析的过程主要包含这7个方面数据分析的过程是循序渐进的过程,主要包括如下7个方面。 一个完整的数据分析的过程,应该包括数据采集、数据存储、数据提取、数据挖掘、数据分析、数据展现、数据应用七个方面。今天我们就来从这几个角度着手,简要介绍一下数据分析的过程。 1. 数据采集 数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条https://www.jiushuyun.com/hywz/2061.html
5.《数据挖掘技术》试读:第三章数据挖掘过程数据挖掘过程 第1章将数据挖掘的良性循环描述为一个业务流程,其中把数据挖掘划分为4个阶段: (1) 识别问题 (2) 将数据转换为信息 (3) 采取行动 (4) 度量结果 本章的重点转向把数据挖掘作为技术过程,把识别业务问题转变为将业务问题转化为数据挖掘问题。同时,第二个阶段——把数据转换为信息,将扩展到几个主题https://book.douban.com/reading/27167261/
6.过程挖掘:数据科学实战MOOC中国首先,课程会大致介绍利用事件数据支持决策和企业过程(再)设计的相关方法和技术;进而重点研究数据挖掘与企业过程建模之间的桥梁——过程挖掘。作为入门级课程,我们还安排了各种实践任务。 课程主要研究三类过程挖掘: 1、第一类过程挖掘是(过程)发现。发现技术通过事件日志制作过程模型,而不利用任何先验信息。例如:通过事件https://www.mooc.cn/course/1271.html
7.数据挖掘的具体工作内容数据挖掘的过程通常包括以下步骤: 1. 数据收集:收集需要分析的数据,可以是结构化数据(如数据库)或非结构化数据(如文本、图像等)。 2. 数据预处理:清洗和转换数据,包括处理缺失值、异常值和重复值,进行特征选择和特征变换等。 3. 模型选择:选择适合问题的数据挖掘模型,如聚类、分类、关联规则挖掘等。 https://www.jianli.com/article/oabjqw.html
8.数据挖掘的流程和方法技巧总结这篇是自己总结的一套比较完整的数据挖掘的流程和常用的技巧,基本上对于任何数据挖掘任务和写作型或结果提交型的数据竞赛都适用(持huan续man更新)。部分内容参考别人写的文章或讨论的结果,部分是自己打比赛做项目时遇到的、用上的方法,同时附上了sklearn中相应工具的文档,便于查找。对于各部分方法,主要以笔记的形式作https://zhuanlan.zhihu.com/p/33429338/voters
9.商战数据挖掘:你需要了解的数据科学与分析思维数据科学的一条重要原则是,数据挖掘的流程可以分解为几个通俗易懂的环节。有些环节涉及信息技术的应用,如数据中模式的自动发现和评估,而有些则主要依赖数据分析师的创意、常识和商业知识。理解数据挖掘的整个过程,有助于组织数据挖掘项目,使它们更接近系统性的分析,而不是凭借运气和个人智慧的冒险行为。 https://www.ituring.com.cn/book/tupubarticle/28952
10.数据仓库与数据挖掘技术—数据挖掘分类及过程模型数据挖掘:首先根据对问题的定义明确挖掘的任务或目的,如分类、聚类、关联规则发现或序列模式发现等。然后选择算法 结果解释与评估:对发现的模式进行可视化,或者把结果转换为用户容易理解的其他表示形式 Fayyad过程模型从某种意义上来说是面向理论,偏向技术的模型,而不是面向工程、面向应用的模型。虽然有模型的评估,但侧重https://www.jianshu.com/p/da25173289b9
11.数据挖掘有哪些工作流程?数据挖掘工作流程: 一、收集数据 收集数据一般是补充外部数据,包括采用爬虫和接口,获取,补充目前数据不足部分。Pythonscrapy,requests是很好的工具。 二、准备数据 主要包括数据清洗,预处理,错值纠正,缺失值填补。连续值离散化,去掉异常值,以及数据归一化的过程。同时需要根据准备采用的挖掘工具准备恰当的数据格式。 https://www.cda.cn/view/17711.html
12.数据挖掘的六个步骤有哪些帆软数字化转型知识库数据挖掘的六个步骤分别是:问题定义、数据收集与准备、数据清洗、数据转换与特征选择、模型建立与评估、结果解释与部署。其中问题定义是数据挖掘过程的首要步骤,直接影响整个项目的成功与否。问题定义涉及明确业务目标、研究目标和所需的数据类型。只有在问题定义清晰的情况下,后续的每一步骤才能有的放矢,确保数据挖掘的结https://www.fanruan.com/blog/article/594251/
13.终于有人把数据挖掘讲明白了图1 数据挖掘过程 2数据挖掘的内容 2.1 关联规则挖掘 从大规模数据中挖掘对象之间的隐含关系称为关联分析(Associate Analysis)或者关联规则挖掘(Associate Rule Mining),它可以揭示数据中隐藏的关联模式,帮助人们进行市场运作、决策支持等。 考察一些涉及许多物品的事务。事务1中出现了物品甲,事务2中出现了物品乙,事务3https://www.51cto.com/article/698009.html
14.保姆式GEO数据挖掘演示写在前面 模拟1000行代码不如实操训练,重现文章中的数据才是学习GEO数据挖掘的最好途径,基于以上精神,我们就来重现一下高分文章的数据挖掘过程。 至于为什么选择这篇文章,是因为我还是个GEO数据挖掘的小白https://m.wang1314.com/doc/webapp/topic/20967139.html
15.网络营销全部59.数据挖掘分析方法中,聚类分析的主要目的是()。 A.找出数据之间的属性联系,形成关联规则B.把一组个体按照相似性归成若干类别,形成新的类标识C.把数据的关联性与时间联系起来,预测关联事件发生的时间D.根据示例数据库中的数据建立判别规则,据此对其他数据进行分类20.在企业【注释】:第十章第二节 第283页 聚类https://www.wjx.cn/xz/261160017.aspx
16.网络空间安全(0839)一级学科硕士研究生培养方案主要研究内容包括:互联网基础设施安全、网络入侵检测与防护、风险分析与态势感知、网络安全防护与主动防御、网络系统恢复、恶意代码检测与取证、恶意代码逆向分析、应急响应与攻击取证、网络对抗、网络监听、网络安全协议、网络漏洞分析与挖掘、系统软件安全等。 http://xxxy.hainnu.edu.cn/html/2018/pyfa_0716/1174.html
17.基于MapReduce的增量数据挖掘研究AET摘要: 频繁项集挖掘是数据挖掘过程中的重要部分,传统数据挖掘算法中常用Apriori算法和FP增长算法来挖掘频繁项集。在实际应用中,传统算法往往不能用于频繁更新的数据库,采用IMBT数据结构能从不断更新的数据库中挖掘频繁项集,但是这将导致存储空间不足和运行效率低下的问题。基于MapReduce的增量数据挖掘能够有效解决这些http://www.chinaaet.com/article/218164
18.工程造价论文大全15篇1港航工程造价控制主要内容 港航工程造价控制的内容非常丰富,只有全面了解需要进行造价控制的所有方面,才能有针对性地制定有效的控制措施,才能为港航工程造价控制效果的优化提供保障。具体来讲,港航工程施工造价的主要控制内容涵盖以下几点:①工程变更造价。港航是水运发展的基础与前提,在具体的施工过程中受到勘察数据不准确https://www.unjs.com/lunwen/f/20240817175958_8311257.html