数据治理体系之二

“很多刚进入数据行业的从业者对于元数据经常会存在理解不了,或者不知道是什么的现象,本文简单从什么是元数据,元数据的定义,元数据的作用,元数据管理的功能,以及元数据在数据治理中的意义进行介绍元数据”

元数据是指描述数据的数据,它包含有关数据的各种属性和特征的信息。在DAMA(数据管理协会)中,元数据的定义是指一组结构化信息,用于描述和管理数据资源。它描述了数据本身(如数据库、数据元素、数据模型),数据表示的概念(如业务流程、应用系统、软件代码、技术基础设施),数据与概念之间的联系(关系)。元数据可以帮助组织理解其自身的数据、系统和流程,同时帮助用户评估数据质量,对数据库与其他应用程序的管理来说是不可或缺的。它有助于处理、维护、集成、保护和治理其他数据。

通过准确、一致和完整的元数据管理,组织可以更好地管理和控制数据资产,提高数据的可信度和可用性,从而支持业务决策和创新。

看这个定义,元数据是什么还是相对比较抽象,下面进行详细的说明。

01什么是元数据

前面已经结束了元数据的定义,下面我们以一个详细的示例来说明什么是元数据。

例如:一张人员信息PersonnelInformation,里面包含字段:ID、Name、EnglishName、Gender、Contact、Post.那么我们在数据库中看到的数据是这样的。

对于这样一张表,我们需要了解这张表的数据就一定需要了解这个表的元数据,那么元数据是什么了

元数据包含业务元数据、技术元数据(包含操作元数据)、管理元数据三种类型。下面详细介绍元数据的三类元数据信息:

一、业务元数据

1)数据集、表和字段的定义和描述,例如表的描述、字段描述属性。

2)业务规则、转换规则、计算公式和推导公式,例如指标字段的计算公式,转换规则等。

3)数据模型(概念模型、逻辑模型),在模型设计阶段中的逻辑模型等。

4)数据质量规则和检核结果,例如对某个字段的质量检查规则。

5)数据标准,例如对某个字段的数据标准。

6)数据的安全/隐私级别。

二、技术元数据

技术元数据(TechnicalMetadata)提供有关数据的技术细节、存储数据的系统以及在系统内和系统之间数据流转过程的信息。技术元数据示例包括:

1)物理数据库表名和字段名。

2)字段属性。

3)数据库对象的属性。

4)访问权限。

5)数据CRUD(增、删、改、查)规则。

6)物理数据模型,包括数据表名、键和索引。

7)ETL作业详细信息。

8)文件格式模式定义。

9)数据溯源和数据血缘,包括上游和下游变更影响的信息。

10)周期作业(内容更新)的调度计划和依赖。

11)恢复和备份规则。

12)数据访问的权限、组、角色。

操作元数据

操作元数据(OperationalMetadata)描述了处理和访问数据的细节,例如:

1)批处理程序的作业执行日志。

2)抽取历史和结果。

3)调度异常处理。

4)审计、平衡、控制度量的结果。

5)错误日志。

8)备份、保留、创建日期、灾备恢复预案。

10)容量和使用模式。

12)清洗标准。

13)数据共享规则和协议。

14)技术人员的角色、职责和联系信息。

三、管理元数据

管理元数据是指元数据属性中的管理属性,例如数据所属权,数据所有者,数据拥有部门等属性。表明数据管理权限等。

2)数据所有权属性(如数据所有权部门、数据所有者)。

那么针对上面那个例子,我们详细列一下该表的业务元数据、技术元数据、管理元数据信息。

元数据管理的元数据模型信息具体根据实际使用需要参照以上的列出来的类别进行添加。以上就是元数据的模型,根据这个模型,建立元数据采集任务,将这些信息采集进入表中进行管理,即完成元数据采集的任务。

02非结构化数据的元数据

非结构化数据的元数据包括以下内容:

这些元数据的存在对于非结构化数据的有效管理至关重要。

非结构化数据的元数据主要应用对象是数据湖的数据,数据挖掘和数据科学家需要对数据探索的时候,需要通过元数据找到需要的数据,以及其他元数据定位到自己需要找到的数据,主要能通过元数据进行搜索和定位的能力。

03、元数据的作用

元数据的作用在数据管理中的重要性毋庸置疑,主要体现在三个方面。

一、数据的解读和理解

完善的元数据让数据可以被解读、被理解,进而才能被管理、被使用。

二、元数据目录是提供数据管理的依据

通过收集和维护元数据,我们可以构建一个元数据目录。在这个元数据目录中,记录了企业的数据及其详细描述信息。元数据目录是数据资产管理和数据共享的基石,也是校验数据质量、制定数据安全策略和建立资产目录的依据。同时,元数据的补充还包括数据安全等级和安全策略等重要信息。

例如我们建立数据资产目录是依据元数据建立的。

例如我们建立服务市场和数据资产市场是依据元数据建立的。

三、数据开发过程中排查问题的依据

综上所述,元数据是大数据管理和治理以及开发的基础,没有这个基础,其他上层的工作都无法开展。

04元数据的管理功能

元数据管理的功能主要包含:元模型管理功能、元数据采集,元数据维护、元数据列表、任务监控五个功能。

元模型管理功能,可以自定义选择元数据采集的元数据项,不同公司可以根据当前使用需求,对元数据采集的任务项进行增删修改,自定义可视化修改元模型。

元数据采集,根据定义的元数据模型,添加采集任务,需要采集哪些库,哪些表的元数据信息呢,新建采集任务之后,由调度系统进行调度执行,更新元数据。

元数据维护,采集元数据有时候存在漏采,错采等情形,提供维护页面对采集的元数据进行修改。

元数据列表,采集元数据以业务维度、技术维度、管理维度、安全维度展示,同时管理采集的元数据版本,可以对比不同版本发生的变更。

任务监控,则是对创建的元数据采集任务进行监控,可以重新启动,或者立即执行,了解采集任务的采集成功或者失败情况。

THE END
1.理解数据类型:每个数据科学爱好者都应该知道的数据结构现在的大量数据中,大部分是非结构化的,即没有预定义模型/结构的数据。如图像,是像素的集合,文本数据是没有预定义储存模型的字符序列,以及用户在Web应用程序上操作的点击流。非结构化数据所需要处理的地方在于,需要通过预处理等方法转化为结构化数据,以便对结构化数据应用统计方法获取原始数据中的重要信息。 https://www.528045.com/article/d32b356ce2.html
2.数据分析常用的知识点概括众所周知,统计学是数据分析的基石。学了统计学,你会发现很多时候的分析并不那么准确,比如很多人都喜欢用平均数去分析一个事物的结果,但是这往往是粗糙的。而统计学可以帮助我们以更科学的角度看待数据,逐步接近这个数据背后的“真相”。 大部分的数据分析,都会用到统计方面的https://mp.weixin.qq.com/s?__biz=MzA3NzIxNDQ3MQ==&mid=2650329307&idx=1&sn=a8acceeb61e80f30140e97cb94f5c059&chksm=86fc3b0e8e011cb7b5774fd8ddeac196609601fc74c38130b8619d2c15ef06adc9328cce132c&scene=27
3.四不像正版资料,构建解答解释落实m418.39.40看点在数据分析的世界里,我们经常会遇到各种看似杂乱无章的数据,这些数据就像“四不像”一样,难以直接归类和解释,正是这些“四不像”的数据,往往蕴含着最有价值的信息,本文将深入探讨如何构建、解答和落实这些“四不像”的正版资料,以期为数据分析师提供一套实用的方法论。 https://www.yzcjl.cn/post/5569.html
4.分不清结构化半结构化和非结构化数据?来看这篇!2、针对半结构化、非结构化数据 针对半结构化、非结构化数据,因为数据分散,缺乏统一管理,需要借用专业工具,目前有两种方式来处理半结构、非结构化数据:①提取半结构、非结构化数据中的关键信息,到结构化数据中进行二次利用,比较好处理的是半结构化(json、xml)、excel、csv,因为这种数据的结构比较统一。②向word、https://zhuanlan.zhihu.com/p/6334917409
5.大模型时代企业知识全生命周期管理解决方案比如,集团制订的归档范围未将一些应归档但无法通过系统流转的文档纳入其中,部门相当一部分非结构化文档数据仍保存在个人电脑之中,导致企业文档数据资产存在着流失的风险。2. 失真非结构化数据往往都质量不高,必须进行数据清理才能进行组织。对于公司来说,清理和准备大量数据过程中就会看到很多失真现象。举个例子:https://baijiahao.baidu.com/s?id=1792924033127896800&wfr=spider&for=pc
6.结构化半结构化和非结构化数据都有哪些数据可以根据其格式和可访问性被分类为结构化数据、半结构化数据和非结构化数据。下面是每种数据类型的定义和一些例子: 结构化数据 结构化数据是指遵循固定格式的数据,通常存储在关系数据库中。这种数据类型易于搜索和组织,因为它遵循一定的模式(如表格),每个数据项都有明确的字段。 https://www.jianshu.com/p/7018b1bef624
7.非结构化数据是什么并且有什么例子呢?问答非结构化数据是无法以二维表来逻辑表达实现的数据,主要的示例为网购记录、通讯记录、出行记录等。https://developer.aliyun.com/ask/443233
8.大数据中非结构化数据的挖掘:文本一、 点击流中的非结构化文本数据都有哪些? 首先来定性什么是非结构化文本数据,这里指的是点击流原始数据中以文字形式展现的数据,包括原始LOG日志以及已经被结构化入库中的部分数据,比如Adobe Analytics的Data Feed,Webtrekk中的Raw Data。当然,有些数据虽然是文本或字符串的形式,但并不是真正意义上的非结构化,比如https://www.51cto.com/article/432085.html
9.结构化半结构化和非结构化数据腾讯云开发者社区有些人说半结构化数据是以树或者图的数据结构存储的数据,怎么理解呢?上面的例子中,标签是树的根节点,和标签是子节点。通过这样的数据格式,可以自由地表达很多有用的信息,包括自我描述信息(元数据)。所以,半结构化数据的扩展性是很好的。 三、非结构化数据https://cloud.tencent.com/developer/article/1351609
10.非结构化数据提取技术在统计工作中的应用摘要结构化数据和非结构化数据是大数据的两种类型,目前非结构化数据信息已达信息总量的85%以上,且每年以55%~65%的速度增长,统计工作受到大数据的冲击,日常总会遇到一些非结构化数据提取的难题,导致工作量加大,效率低下。本文对非结构化数据及其提取技术、大数据处理语言——Python语言进行学习研究,解决实际中遇到https://tjj.changzhi.gov.cn/sjfx/202207/t20220704_2588893.html
11.engineering):利用领域知识和现有数据,创造出新的特征,用于具体涵盖了结构化与非结构化、定量与定性数据的区分,数据清洗中的数据对齐、缺失值处理、异常值处理等方法,特征构造中的统计量构造、周期值、数据分桶、特征组合,特征选择的三种形式及多种具体方法,特征变换的标准化、归一化、区间缩放、非线性变换等,还讨论了离散变量处理和降维的多种方法,并在最后进行了总结。https://juejin.cn/post/6874516288149028872
12.取其精华!设计师读书笔记连载系列之《简约至上》优设网5、非结构化数据 系统要求用户输入信息:2016-04-06,当你少输入一个数字或者输入错误时,就会提示你。向用户转移用在这里并不合适,用户非常反感强制性的做法。如果你能仅仅让用户输入:明天,本周五,七天后这些字符便能识别,用户一定更为愉悦 记得最开始使用siri的时,凌晨一点多,我想让Siri明上八点叫醒我,我们的对话https://www.uisdc.com/note-for-simple-and-usable
13.云计算大数据和人工智能结构化的数据:即有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。 非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页,有时候非常长,有时候几句话就没了;例如语音,视频都是非结构化的数据。 https://dsjzx.scy.cn/info/1041/2192.htm
14.分享关于非结构化Excel表格数据整合,抽取的方案一个SQL在上万个不规范的非结构化Excel文档上运行 导出成结构化数据 下面是一个SQL语法和例子:在SQLhttps://club.excelhome.net/thread-1658916-1-1.html&ordertype=1
15.什么是文本挖掘?IBM半结构化数据:顾名思义,这些数据由结构化和非结构化数据格式混合而成。 虽然这种数据经过了一定的组织,但其结构不足以满足关系数据库的要求。 半结构化数据的例子包括 XML、JSON 和 HTML 文件。 由于世界上约 80% 的数据都属于非结构化格式(链接位于 ibm.com 外部),因此对于组织而言,文本挖掘是一种非常有价值https://www.ibm.com/cn-zh/topics/text-mining