什么是数据目录?定义案例和最佳实践

基于大数据引擎,通过可视化组件、托拉拽式实现数据汇聚与集成开发

指标定义、指标建模、指标固化、指标分析,一体化完成指标的落地与应用

组件化、零sql实现各类复杂报表和丰富多样的图表分析

面向业务人员,简单拖拽即可生成可视化图表

内置150+特效组件,快速打造酷炫灵动的可视化大屏,支持在线编码,拓展视觉体验至极致

搭载自然语言分析引擎,引入AI大模型技术,通过简单的对话问答实现快速数据分析

移动采集、审批、分析一站式解决移动办公诉求

一站式数据分析平台

了解ABI

全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。

内置多类主数据模版,可视化实现多视角模型定义,满足复杂规则的编码自动控制

多种数据接入方式,支持不同场景的审批管控,数据版本可回溯,满足主数据的全生命周期管理

拖拽式任务设计,内置丰富组件,支持主动式、被动式分发模式

全过程质量管控,支持内置及自定义规则,提供图表式质检报告

主数据管理平台

在线模型设计,深度融合数据标准,规范数据定义

自动化元数据感知,全链路血缘提取,理清数据资源

智能化标准推荐,一键式数据落标,树立数据权威

“零”编码规则搭建,全流程质量整改,高速数据质检

规范资产目录,自助式数据共享,释放资产价值

超30+主流数据库、国产库、大数据库、文件、消息队列等接口之间极速交换结构化、非结构化数据

构建分级分类体系,动态数据脱敏,保障数据安全

全盘监控数据,决策数据周期,释放数据资源

智能数据治理平台

了解睿治

覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。

结合标准体系的可视化建模工具,支持模型的正、逆向构建

拖拽式任务编排,内置丰富组件,支撑亿级数据的快速处理与迁移

具备高并发、高吞吐量、低延迟的一体化任务编排能力,可视化设计、分布式运行

提供图形化的任务监控和日志跟踪,面向运维、管理人员的完善监控体系

数据工厂系统

纯web设计器,零编码完成基本表、变长表、中国式复杂报表、套打表、问卷调查表等制作;支持年报、月报、日报,以及自定义报表期等多种数据采集报送频率

提供在线填报和离线填报两种应用模式,也支持跨数据源取数;填报数据自动缓存在WEB浏览器中,即使宕机也不会丢失

内置灵活轻便的工作流引擎,实现了用户业务过程的自动化;支持层层审批、上级审批、越级审批、自定义审批等多种审批方式

对于下级填报单位上报的数据,上级汇总单位可将其进行汇总;支持层层汇总、直接下级汇总、选择单位汇总、按条件汇总、按代码组汇总、按关键字汇总、自定义汇总等

提供数据锁定机制,防止报表数据被意外修改;支持数据留痕,辅助用户过程追溯;未及时上报的用户自动催报;所见即所得的打印输出等

提供多种类型的数据接口,可以导入EXCEL、DBF、二进制、文本等格式的数据,可以将报表数据批量输出为HTML、EXCEL、XML、TXT等格式

数据采集汇总平台

统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。

采用可视化、导向式方式构建指标业务域,形成指标地图,全局指标一览在目

流程化自助式的定义、开发、维护各类指标,零建模,业务人员即刻上手

助力企业更好地查询、使用指标,提供共享、交换、订阅、分析、API接口等应用服务

指标管理平台

零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。

面向业务的对话式问数,即问即答,更懂你的诉求

理解数据,洞察数据,更懂数据内容,把数据见解讲给你听

动态地分析数据特点,提供最合适的图表类型展示,让数据展现更简单

完全是颠覆做表的方式,一句话看板创建,启发式内容制作

智能化生成包含深入分析和建议的报告,复杂数据简单化,释放数据潜力

数据跃然屏上的AI大屏汇报,让数据讲述故事

海量知识,一触即达,提供更智能的知识检索服务,快速找到“对”的人

不止于工具,更是随时待命的得力助手。一声指令,为您提供即时的数据分析和决策支持

THE END
1.理解数据类型:每个数据科学爱好者都应该知道的数据结构现在的大量数据中,大部分是非结构化的,即没有预定义模型/结构的数据。如图像,是像素的集合,文本数据是没有预定义储存模型的字符序列,以及用户在Web应用程序上操作的点击流。非结构化数据所需要处理的地方在于,需要通过预处理等方法转化为结构化数据,以便对结构化数据应用统计方法获取原始数据中的重要信息。 https://www.528045.com/article/d32b356ce2.html
2.数据分析常用的知识点概括众所周知,统计学是数据分析的基石。学了统计学,你会发现很多时候的分析并不那么准确,比如很多人都喜欢用平均数去分析一个事物的结果,但是这往往是粗糙的。而统计学可以帮助我们以更科学的角度看待数据,逐步接近这个数据背后的“真相”。 大部分的数据分析,都会用到统计方面的https://mp.weixin.qq.com/s?__biz=MzA3NzIxNDQ3MQ==&mid=2650329307&idx=1&sn=a8acceeb61e80f30140e97cb94f5c059&chksm=86fc3b0e8e011cb7b5774fd8ddeac196609601fc74c38130b8619d2c15ef06adc9328cce132c&scene=27
3.四不像正版资料,构建解答解释落实m418.39.40看点在数据分析的世界里,我们经常会遇到各种看似杂乱无章的数据,这些数据就像“四不像”一样,难以直接归类和解释,正是这些“四不像”的数据,往往蕴含着最有价值的信息,本文将深入探讨如何构建、解答和落实这些“四不像”的正版资料,以期为数据分析师提供一套实用的方法论。 https://www.yzcjl.cn/post/5569.html
4.分不清结构化半结构化和非结构化数据?来看这篇!2、针对半结构化、非结构化数据 针对半结构化、非结构化数据,因为数据分散,缺乏统一管理,需要借用专业工具,目前有两种方式来处理半结构、非结构化数据:①提取半结构、非结构化数据中的关键信息,到结构化数据中进行二次利用,比较好处理的是半结构化(json、xml)、excel、csv,因为这种数据的结构比较统一。②向word、https://zhuanlan.zhihu.com/p/6334917409
5.大模型时代企业知识全生命周期管理解决方案比如,集团制订的归档范围未将一些应归档但无法通过系统流转的文档纳入其中,部门相当一部分非结构化文档数据仍保存在个人电脑之中,导致企业文档数据资产存在着流失的风险。2. 失真非结构化数据往往都质量不高,必须进行数据清理才能进行组织。对于公司来说,清理和准备大量数据过程中就会看到很多失真现象。举个例子:https://baijiahao.baidu.com/s?id=1792924033127896800&wfr=spider&for=pc
6.结构化半结构化和非结构化数据都有哪些数据可以根据其格式和可访问性被分类为结构化数据、半结构化数据和非结构化数据。下面是每种数据类型的定义和一些例子: 结构化数据 结构化数据是指遵循固定格式的数据,通常存储在关系数据库中。这种数据类型易于搜索和组织,因为它遵循一定的模式(如表格),每个数据项都有明确的字段。 https://www.jianshu.com/p/7018b1bef624
7.非结构化数据是什么并且有什么例子呢?问答非结构化数据是无法以二维表来逻辑表达实现的数据,主要的示例为网购记录、通讯记录、出行记录等。https://developer.aliyun.com/ask/443233
8.大数据中非结构化数据的挖掘:文本一、 点击流中的非结构化文本数据都有哪些? 首先来定性什么是非结构化文本数据,这里指的是点击流原始数据中以文字形式展现的数据,包括原始LOG日志以及已经被结构化入库中的部分数据,比如Adobe Analytics的Data Feed,Webtrekk中的Raw Data。当然,有些数据虽然是文本或字符串的形式,但并不是真正意义上的非结构化,比如https://www.51cto.com/article/432085.html
9.结构化半结构化和非结构化数据腾讯云开发者社区有些人说半结构化数据是以树或者图的数据结构存储的数据,怎么理解呢?上面的例子中,标签是树的根节点,和标签是子节点。通过这样的数据格式,可以自由地表达很多有用的信息,包括自我描述信息(元数据)。所以,半结构化数据的扩展性是很好的。 三、非结构化数据https://cloud.tencent.com/developer/article/1351609
10.非结构化数据提取技术在统计工作中的应用摘要结构化数据和非结构化数据是大数据的两种类型,目前非结构化数据信息已达信息总量的85%以上,且每年以55%~65%的速度增长,统计工作受到大数据的冲击,日常总会遇到一些非结构化数据提取的难题,导致工作量加大,效率低下。本文对非结构化数据及其提取技术、大数据处理语言——Python语言进行学习研究,解决实际中遇到https://tjj.changzhi.gov.cn/sjfx/202207/t20220704_2588893.html
11.engineering):利用领域知识和现有数据,创造出新的特征,用于具体涵盖了结构化与非结构化、定量与定性数据的区分,数据清洗中的数据对齐、缺失值处理、异常值处理等方法,特征构造中的统计量构造、周期值、数据分桶、特征组合,特征选择的三种形式及多种具体方法,特征变换的标准化、归一化、区间缩放、非线性变换等,还讨论了离散变量处理和降维的多种方法,并在最后进行了总结。https://juejin.cn/post/6874516288149028872
12.取其精华!设计师读书笔记连载系列之《简约至上》优设网5、非结构化数据 系统要求用户输入信息:2016-04-06,当你少输入一个数字或者输入错误时,就会提示你。向用户转移用在这里并不合适,用户非常反感强制性的做法。如果你能仅仅让用户输入:明天,本周五,七天后这些字符便能识别,用户一定更为愉悦 记得最开始使用siri的时,凌晨一点多,我想让Siri明上八点叫醒我,我们的对话https://www.uisdc.com/note-for-simple-and-usable
13.云计算大数据和人工智能结构化的数据:即有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。 非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页,有时候非常长,有时候几句话就没了;例如语音,视频都是非结构化的数据。 https://dsjzx.scy.cn/info/1041/2192.htm
14.分享关于非结构化Excel表格数据整合,抽取的方案一个SQL在上万个不规范的非结构化Excel文档上运行 导出成结构化数据 下面是一个SQL语法和例子:在SQLhttps://club.excelhome.net/thread-1658916-1-1.html&ordertype=1
15.什么是文本挖掘?IBM半结构化数据:顾名思义,这些数据由结构化和非结构化数据格式混合而成。 虽然这种数据经过了一定的组织,但其结构不足以满足关系数据库的要求。 半结构化数据的例子包括 XML、JSON 和 HTML 文件。 由于世界上约 80% 的数据都属于非结构化格式(链接位于 ibm.com 外部),因此对于组织而言,文本挖掘是一种非常有价值https://www.ibm.com/cn-zh/topics/text-mining