大数据分析处理关键技术有哪些

数据处理是提取大量和复杂的海量数据的价值,其中最有价值的部分在于预测分析,即通过数据可视化、统计模式识别、数据描述和其他数据挖掘形式,帮助数据科学家更好地理解数据,并根据数据挖掘的结果获得预测决策。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

大数据采集一般分为:

1)大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

2)基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

完成对已接收数据的辨析、抽取、清洗等操作。

1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

四、大数据分析及挖掘技术

大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。

大数据分析处理关键技术有哪些中琛魔方大数据分析平台(www.zcmorefun.com)表示数据挖掘的计算复杂度和灵活性远远超过前两类要求。一是由于数据挖掘问题的开放性,数据挖掘将涉及大量的派生变量,而派生变量的多变性将导致数据预处理计算的复杂性;第二,许多数据挖掘算法本身比较复杂,计算量很大,特别是大量的机器学习算法,它们是迭代计算,需要通过多次迭代找到最优解。

THE END
1.大数据方面核心技术有哪些?简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说: 一、大数据采集 大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。 数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依https://zhuanlan.zhihu.com/p/309643670
2.大数据关键技术探讨大数据的关键技术是什么大数据关键技术探讨 大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。 大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、https://blog.csdn.net/weiyuefei/article/details/53607181
3.大数据的关键技术有哪些大数据的关键技术有哪些 大数据关键技术包括:数据存储:dfs、nosql数据库、关系型数据库数据处理:批处理框架、流处理框架、内存计算数据分析:机器学习、数据挖掘、可视化数据集成:数据仓库、数据湖、esb数据安全:数据加密、数据访问控制、数据备份和恢复 大数据的关键技术https://www.xlyvps.com/help/index.php/4170.html
4.大数据的关键技术有哪些?大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。那么,大数据的关键技术有哪些呢?今天就跟随小编一起来了解下吧! http://www.soft6.com/news/2021/03/03/372772.html
5.大数据的关键技术有哪些全国大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。大数据关键技术https://www.1633.com/ask/124184.html
6.大数据的关键技术有哪些()大数据的关键技术有哪些() A. 物联网技术 B. 数据集成与处理技术 C. 大数据存储及管理技术 D. 大数据的分析与挖掘 题目标签:技术数据大数据如何将EXCEL生成题库手机刷题 如何制作自己的在线小题库 > 手机使用 分享 反馈 收藏 举报 参考答案: B C D 复制 纠错https://www.shuashuati.com/ti/e1e8f3143a61483dabc06a73deb296a2.html?fm=bdf0fc2f04115647dc85aa038fe975ee75
7.大数据分析的关键技术有哪些大数据分析的关键技术包括以下5条:1、数据清洗与融合;2、大数据处理框架;3、大数据建模与分析;4、大数据可视化;5、大数据隐私保护。大数据技术是一系列使用非传统的工具来对大量的结构化、半结构化和非结构化数据进行处理,从而获得分析和预测结果的数据处理技术。大数据价值的完整体现需要多种技术的协同。大数据关键技术涵https://www.linkflowtech.com/news/2065
8.有哪些大数据分析的关键技术?DIACT数皆DIA有哪些大数据分析的关键技术? 在数字化时代,大数据分析已经成为推动企业创新、决策和发展的关键引擎。然而,要从海量的数据中提炼有用的信息,并实现对复杂问题的深刻理解,需要依赖一系列关键技术的支持。 在当今数字化时代,大数据分析已经成为企业决策、科学研究和社会发展的重要支柱。然而,要充分发挥大数据的潜力,关键技术https://www.diact.com/wp/archives/5250
9.数字核心技术之大数据金融IT那些事儿大数据应用,是指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。需要注意的是,大数据应用失败的例子比比皆是,并不是有了大数据技术就可以马上见到效果,有许多关键要素需要关注。 一方面,要想释放大数据推动变革的能量,除了要有大量的数据和大数据技术平台外,还必须要配合持续严谨的数据治理、富有洞见的数据https://www.shangyexinzhi.com/article/4728116.html
10.数字孪生需要哪些技术数字孪生关键技术行业知识库数字孪生集成了建模与仿真、虚拟现实、物联网、云边协同以及人工智能等技术,通过实测、仿真和数据分析来实时感知、诊断、预测物理实体对象的状态,通过指令来调控物理实体对象的行为,通过相关数字模型间的相互学习来进化自身,合理有效地调度资源或对相关设备进行维护。https://www.lingtuvr.com/knowledge/7952.html
11.大数据的五大关键技术51CTO博客大数据的五大关键技术 大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和展现的有力武器。 一、大数据接入 1、大数据接入 已有数据接入、实时数据接入、文件数据接入、消息记录数据接入、文字数据接入、图片数据接入、视屏数据接入https://blog.51cto.com/u_15057819/4340330
12.大数据最核心的关键技术——32个算法以上就是Christoph博士对于最重要的算法的调查结果。你们熟悉哪些算法?又有哪些算法是你们经常使用的? 结语 感谢您的观看,如有不足之处,欢迎批评指正。 如果有对大数据感兴趣的小伙伴或者是从事大数据的老司机可以加群: 658558542 (?点击即可加入群聊 里面整理了一大份学习资料,全都是些干货,包括大数据技术入门,海量https://www.jianshu.com/p/6f4788ed3fca
13.关于大数据四大方面的十五大关键技术详解近年来,大数据来势汹汹,渗透到各行各业,带来了一场翻天覆地的变革。让人们越发认识到,比掌握庞大的数据信息更重要的是掌握对含有意义的数据进行专业化处理的技术。如果将大数据比作一种产业,那么这产业盈利的关键点在于,提高对数据的“加工能力”,通过“加工”实现数据的“增值”,这便是大数据关键技术发挥的能力。 http://www.360doc.com/content/16/1013/18/32626470_598185911.shtml
14.科学网—[转载]教育大数据采集机制与关键技术研究然而,当前教育界学者对教育大数据的采集机制和技术尚未达成共识,存在一些有待解决的关键问题,如:教育大数据究竟包含哪些内容?如何采集?涉及哪些关键技术?需要遵守哪些标准与规范?针对上述问题的研究有助于推动大数据在教育领域中的大规模成功应用,并深化我国教育现代化的改革与发展。https://blog.sciencenet.cn/blog-3472670-1280765.html
15.大数据技术的基础是哪些(大数据核心技术都有哪些)上文说到大数据的由来,重要的事情说上三遍,只有需求才能产生市场,只有满足需求的技术才是有生命力的,才是有价值的。 大数据这门技术无疑是有价值的,因为它就是因为市场的需求才应运而生的。移动互联网时代的到来,手机成为了人们身体的一部分,人们每天花在手机上的时间逐渐超过了睡眠和工作,一举拿下了第一名。https://m.xitongzhushou.com/jiaocheng/27199.html
16.大数据技术:新质生产力的关键,助推产业升级与经济发展在新质生产力的背景下,大数据技术的发展呈现出前所未有的活力和潜力。新质生产力强调创新在经济发展中的核心作用,追求高科技、高效能、高质量的生产方式,这与大数据技术的特性和发展方向高度契合。在智能制造、智慧城市、智慧医疗等领域,大数据技术都有着广泛的应用前景。通过大数据技术的应用,可以实现生产过程的智能化https://www.hljp.edu.cn/xxgcxy/info/1041/3885.htm
17.大数据系统隐私保护关键技术伴随着当代社会互联网技术的飞速发展,整个社会也进入了大数据时代。不论人们承认与否,我们的个人数据正在不经意间被动地被企业、个人进行搜集并使用。个人数据的网络化和透明化已经成为不可阻挡的大趋势。这些用户数据对企业来说是珍贵的资源,因为他们可以通过数据挖掘和机器学习从中获得大量有价值的信息。与此同时,用户https://www.clii.com.cn/lhrh/hyxx/202209/t20220915_3954961.html
18.江西省人民政府工作动态“大数据”在统计中的应用初探在当今国家发展与竞争中,大数据已成为未来的核心竞争力,谁掌握了大数据,利用大数据实现真正的变革,谁就能赢得未来。第一,对大数据的处理分析已成为新一代信息技术融合应用的结点。第二,大数据是信息产业持续高速增长的新引擎。第三,大数据利用将成为提高核心竞争力的关键因素。第四,大数据将成为降成本、增效益、促转型、https://www.jiangxi.gov.cn/art/2018/12/7/art_5472_408194.html