论文:大数据的若干基础研究方向网经社电子商务研究中心电商门户互联网+智库

●不冲突是指大数据不取代信息化,信息化不包含大数据。这样,信息化工作照样做,并且信息化仍然将快速发展。但大数据已经从信息化工作中独立出来,如果说信息化对应的技术叫信息技术(informationtechnology,IT),那么大数据对应的技术可以叫数据技术(datatechnology,DT)。

信息化的技术和大数据的技术是不同的,参考文献[1]给出了二者技术的对比。这样,信息化的基础研究和大数据的基础研究也是不一样的。大数据的基础包括:应用基础、分析基础、数据基础、计算基础和数学基础5个方面。

大数据的应用基础包括各学科、各领域的基于数据的新方法、新范式、新理论等,用于支撑基于大数据的科学研究方法、社会发展方式、经济建设模式和国防安全手段。大数据的应用基础是建立在大数据技术、产品、工具和解决方案之上的,而这些产品和工具的开发需要大数据的分析基础。大数据的分析基础包括大数据分析理论与框架、大数据分析方法和算法、业务驱动的分析理论和方法等,大数据分析方法和算法的实现和实施需要大数据的数据基础、计算基础和数学基础。大数据的数据基础包括大数据的治理和管理、存储理论和模型、可视化等;大数据的计算基础包括多地计算/异地计算、计算框架、硬件设备、网络设备等;大数据的数学基础包括数据的数学结构、数据代数、数据相似性等。图1给出了大数据基础的逻辑关系。

图1大数据基础逻辑关系

自2012年起,国家自然科学基金委员会对大数据研究开始立项,总体资助情况分布如图2所示。

图22012—2016年国家自然科学基金资助的以“大数据”为主题词的项目数

图32012—2016年国家自然科学基金委员会各学部资助项目数分布

图42012—2016年在五大基础方面的项目数总占比

图52012—2016年在五大基础方面的项目数年度占比

从图5可以看出,在2012年大数据发展初期,计算框架和计算能力是推动大数据发展最急需的基础,而之后随着开源计算框架的出现,计算基础的比例又开始下降。然而,2016年,数据开放共享成为趋势和重点,数据迁移、异地交换的需求又促进研究者探索新的计算框架。并且,分析基础在2013年的突增也说明当时对大数据方法需求的增长,随后相对稳定。在计算基础下降的过程中,应用基础占比逐渐上升,这说明越来越多的领域参与到大数据的研究中来。

图62012—2016年在五大基础方面的项目数年度变化情况

3大数据的应用基础

大数据的应用渗透到越来越多的领域,各领域大数据理论和方法的研究将为创新大数据应用、提升大数据价值奠定基础,创造出基于大数据的新型科学研究、管理决策、社会发展、经济建设方法和模式等。大数据的应用基础主要表现在各个学科基于大数据的创新,以科学研究的第四范式为代表[3],包括对人文社会科学的研究、管理决策新方法、外部事件驱动的管理决策方法、基于微观数据的宏观经济学等。

GRAYJ指出[3]:几千年前,科学研究是用实验解释自然现象的;几百年前,科学研究用理论模型探索科学规律,用实验验证理论;几十年前,科学研究用计算机模拟复杂现象,探索其中的奥秘;现在,科学研究是基于对数据的探索。科学的目的是认识宇宙、认识物质、认识生命、认识社会。

●在认识宇宙方面:人们用了很多方法,早期科学家用肉眼观测天空,后来用望远镜,现在用射电望远镜。这些望远镜得到的结果是各种各样的宇宙图像,天文学家通过分析这些图像来研究宇宙。

●在认识生命方面:自从DNA被发现,人类对生命的认识进入了全新的阶段,人类似乎找到生命的本质、遗传的本质。DNA可以用A(腺嘌呤)、C(胞嘧啶)、G(鸟嘌呤)、T(胸腺嘧啶)4个字母的字符串表示,于是DNA变成了可以用计算机计算的数据,生命科学研究就出现计算生物学的分支,并且迅速发展。生命科学家开始分析数据,或者通过分析数据来研究生命。

从上述分析可知,不论是自然科学还是社会科学,先进的研究方法是在数据上开展研究,这也说明,认识数据先于认识宇宙、认识物质、认识生命和认识社会。

大数据应用基础的主要研究方向如下。

●各学科基于大数据的新方法、新范式、新理论等,包括生命科学、物理、化学、天文、历史、社会、管理、经济等学科的大数据方法和模型研究与探索。

●各领域基于数据的新方法、新范式、新理论等,包括医疗、金融、交通、环保、商业等领域的大数据创新模式、智能决策方法和模型研究与探索。

●用于支撑基于大数据的科学研究方法、社会发展方式、经济建设模式和国防安全手段。

国家自然科学基金委员会也已对上述各个研究方向开展资助,例如在生命科学的大数据方法研究项目有:“利用大数据信息挖掘和基因进化方法研究禽流感病毒的跨地域传播”“基于大数据整合挖掘的肾细胞癌分子进化机制研究”等;商业、交通、环保等领域的大数据方法研究项目有:“大数据背景下的商业模式创新机制研究”“大数据驱动的产品精确设计理论、方法及其应用研究”“大数据环境下的复杂城市交通系统预测与控制”“数据驱动的我国PM2.5污染规律模型智能构建方法研究”“大数据驱动的我国典型重点流域水污染防控决策研究”以及“数据驱动的军事复杂系统风险决策分析方法及其应用研究”“面向军事情报的多媒体大数据分析与展示”等项目。

4大数据的分析基础

开发数据的核心是数据分析,也就是说大数据技术的核心是数据分析技术。目前,大数据分析技术主要在传统方法上延伸拓展,还没有从本质上解决大数据利用面临的挑战。这需要探索大数据分析技术的共性问题,主要研究方向如下。

(1)传统数据分析算法的改进原理

现有的大数据分析理论与方法大多从传统的统计分析、数据挖掘、机器学习、数据融合等领域派生出来,例如K-means++[5]、K-meansⅡ[6]等聚类算法对经典K-means算法进行了改进,实现了大规模数据高效聚类。大数据的特点使现有方法超出了其使用条件和范围。因此,如何在拓展原有方法的基础上,研究适用于大数据特征的数据分析方法成为大数据时代的挑战,包括研究扩展传统的数据挖掘、机器学习、数据融合算法的原理。

(2)新型数据挖掘算法

大数据挖掘是从大数据中寻找其规律的技术[7]。大数据具有高价值、低密度的特性,“寻找”变得更具挑战性。分类分析需要有标签的训练集指导建模,但是大数据集中大多是没有经过专家打好标签的数据,需探索新的分类方法,以利用较少的有标签样本和较多的无标签样本进行学习。此外,面向高价值低密度的大数据集,存在这样一类数据挖掘需求:发现给定大数据集里面少数相似的数据对象组成的、表现出相异于大多数数据对象而形成异常的群组,被称为特异群组挖掘[8-10]新的大数据挖掘方法研究包括特异群组挖掘方法、面向海量数据查询的相似性计算方法、大规模带时序可信知识图谱自动构建方法、动态大图分析方法等。

(3)高维数据分析方法

通过对大数据本身的压缩来适应有限存储和计算资源,除了研发计算能力更强、存储量更大的计算机之外,维规约技术(包括选维、降维、维度子空间等)是一类有效的方法,但也具备技术挑战。需要面向不同类型的数据研究语义保持下的大数据维规约技术(包括特征分析、特征选择、降维、子空间等),形成新的高维大数据分析方法和理论。

(4)深度学习方法

国家自然科学基金委员会在大数据分析基础方面资助的项目有:“大数据机器学习分布式算法的可行性理论”“基于知识指导和模糊信息粒化的时序大数据分析和挖掘”“RADIUSK-means算法及其拓展问题的研究”“基于多源异构不确定数据的高效用信息挖掘的研究”“面向图像序列的深度学习理论与方法”“面向大数据的快速关联分析关键技术研究”“面向大数据分析的自学习网络关键技术研究”“基于认知计算的大数据挖掘理论与技术”项目等。

5大数据的数据基础

(1)大数据治理

确保数据稀缺性不丧失和隐私不泄露是推动和实现数据开放共享的关键,有必要探索数据隐私保护机制及模型、大数据权属认定与保障理论及体系、区块链技术,构建数据自治开放理论体系,推动大数据交易。

(2)外部数据的质量保障机制

(3)大数据建模

关系模型、面向对象模型在以前的数据管理技术中发挥了核心作用。但原有的数学模型多是针对一种类型的数据,而大数据中包含结构化数据、半结构化数据和非结构化数据,因此需要研究相应的建模方法,将不同类型的数据从语义上关联在一起,以复杂关联网络等技术为基础研究连接各种不同类型数据的数据描述机制,支撑对大数据的管理。

(4)大数据索引

传统索引结构常用于结构化数据库系统,能够提高小规模数据检索速度和查询表连接效率。然而,大数据环境下,传统索引结构存在冗余、存储空间过大、更新困难以及不适用于分布式存储环境等缺陷,这需要针对大数据的存储与数据特性研究大数据索引,包括非结构化数据索引结构、基于分布式存储的数据索引结构、高维与多目标需求下的数据索引结构等多种索引模型和索引性能评估模型。

(5)大数据可视化机理和方法

(6)知识图谱

知识图谱用于刻画实体或概念及其之间的关系,在大数据环境下,知识图谱更新和复杂性都急剧增加,为构建高质量知识图谱和实现有效推理,需要研究复杂知识图谱的语义描述方法、不确定知识图谱的构建与管理、基于知识图谱的多种类型数据表示模型、跨结构数据的存取机制和语义表示等。

国家自然科学基金委员会对数据基础研究方向的资助项目有:“大数据协同计算及查询服务的隐私保护”“大数据环境下的首席数据官、数据治理及组织绩效关系研究”“高质量大数据集成关键技术的研究”“大数据一致性错误管理理论与关键技术”“大数据集背景下概念格的多粒度构造和存储研究”“分布式不确定数据查询处理关键技术研究”“面向大数据的信息可视化设计方法研究”“高维大数据可视化的散度模型、算法及评价”“基于外存的海量知识图谱数据的查询处理”等。

6大数据的计算基础

(1)新型高效能系统结构

当前,计算机系统的计算部件、存储部件、通信部件的功能和性能已朝着高速、高容量、高带宽的方向发展,并具有可编程、可定制等特点。如何利用这些部件构建新型高效能计算机系统满足大数据处理需求,是一个迫切需要解决的问题。这需要探索可重构、高度可配置的新型高效能系统结构;研究计算、存储和通信部件的有机结合、按需配置、弹性伸缩的方法;研究可变结构、软硬件结合的拟态计算机系统结构;研究高效能分布式存储系统的构建原理。

(2)性能导向的大数据计算框架

大数据的规模、计算时效性以及异构数据分布存储的特征,对计算机系统的高通量、高时效和高并行提出了挑战。性能导向的并行计算框架是应对大数据挑战的关键和基础。这需要研究分析大数据应用的计算特征、通信特征和存储特征;研究并行计算系统的高通量、高时效计算技术,包括实时分布式内存系统、内存计算系统、异构多核平台的性能加速技术等;研究性能可预测的并行计算模型。

(3)多地计算/异地计算理论与方法

数据大的难以移动、数据重要的不愿移动,在此背景下,如何求解一个全局问题是一大挑战。通常在大数据所属地计算局部解,即大数据应用具有数据存储的分布性问题,在数据所在地进行计算,产生的部分计算结果可能出现不一致、相互背离等现象,需要通过不同方式的计算进行验证,这给求解全局问题带来挑战。因此,需要研究大数据多地计算/异地计算基础问题,包括异地计算行为建模;研究局部解的局限性评估机制、局部解发送接收的身份验证机制、局部解的优化融合策略;研究全局解的最优性评估机制、提高全局解最优率的异地选取策略等。

7大数据的数学基础

(1)大数据的代数系统

关系代数为关系型计算提供理论依据。然而,高扩展性是大数据分析的重要需求,传统的关系数据模型难以胜任当前存在的非结构化数据(如文本数据、序列数据、流式数据等)的处理。近年来,已出现一些非关系型数据库(如HBase、MongoDB等),在非结构化数据上的复杂数据分析能力有所提高,并得到广泛应用。但是,目前缺少对非关系型数据库的数据代数的研究。对于非关系型数据,定义由数据集构成的集合上的度量方法和运算,形成一定论域上的数据代数等,这些都将在数学基础上对非关系型数据提供理论支持,有望突破现有技术瓶颈。

(2)大数据内在数学结构

数据有复杂的拓扑、网络等不同结构,在大数据问题中,数据本身往往具有更为复杂的内在数学结构,例如,高维数据空间中因为具有一定的约束条件而具有流形的数据结构;又如,在图像等非结构化数据中,先天性地具有低秩的数学性质。在深刻理解和挖掘内在相应结构的基础上,才能有效建立分析模型。针对大数据集的流形或复形等复杂数学结构和稀疏、低秩等数学性质,设计合理描述的数据结构,构建相应的度量,选取多尺度自适应的基底表示,为构建分析模型、形成反映内在结构参数的分析算法提供理论支撑,并通过数学结构的性质,保证算法的适用性。

(3)大数据的相似性度量

相似性是数据挖掘分析任务的核心。简单数据类型的相似性度量支撑传统数据分析模型,然而,针对复杂数据类型,这些相似性度量难以真实反映数据之间的关系。针对大数据复杂性特征,定义空间非刚性结构的相似性度量和超高维、多类型的大数据相似性度量,发展非线性降维方法、核理论以及相应的高效算法和稳定性分析。

8结束语

参考文献:

[1]朱扬勇,熊贇.大数据是数据、技术,还是应用[J].大数据,2015007

ZHUYY,XIONGY.Definingbigdata[J].BigDataResearch,2015007.BigDataResearch,2015007.

[2]MOOREGE.Themicroprocessor:engineofthetechnologyrevolution[J].CommunicationsoftheACM,1997,40(2):112.

[3]HEYT,STEWARTT,KRISTINT.Theforthparadigm:data-intensivescientificdiscovery[M].Beijing:MicrosoftResearchPress,2009.

[4]CARMID,FALKOWSKIA,KUFLIKE,etal.Higgsafterthediscovery:astatusreport[J].JournalofHighEnergyPhysics,2012,arXiv:1207.1718.

[5]BAHMANIB,MOSELEYB,VATTANIA,etal.Scalablek-means++[J].ProceedingsoftheVLDBEndowment,2012,5(7):622-633.

[6]ARTHURD,VASSILVITSKIIS.K-means++:theadvantagesofcarefulseeding[C]//18thACM-SIAMSymposiumonDiscreteAlgorithms,January7-9,2007,NewOrleans,Louisiana,USA.NewYork:ACMPress,2007:1027-1035.

XIONGY,ZHUYY,CHENZY.Bigdatamining[M].Shanghai:ShanghaiScientific&TechnicalPublishersPress,2016.

[8]熊贇,朱扬勇.特异群组挖掘:框架与应用[J].大数据,2015020.

XIONGY,ZHUYY.Abnormalgroupmining:frameworkandapplications[J].BigDataResearch,2015020.

[9]XIONGY,ZHUYY,YUPS,etal.Towardscohesiveanomalymining[C]//27thAAAIConferenceonArtificialIntelligence(AAAI),July14-18,2013,Bellevue,Washington,USA.SanFrancisco:AAAIPress,2013:984-990.

[10]XIONGY,ZHUYY.Miningpeculiaritygroupsinday-by-daybehavioraldatasets[C]//IEEEInternationalConferenceonDataMining(ICDM),December6-9,2009,Miami,Florida,USA.NewJersey:IEEEPress,2009:578-587.

[11]HINTONGE,SALAKHUDINOVRR.Reducingthedimensionalityofdatawithneuralnetworks[J].Science,2006,313(5786):504-507.

THE END
1.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn“数据挖掘算法”是创建数据挖掘模型的机制。为了创建模型,算法将首先分析一组数据并查找特定模式和趋势。算法使用此分析的结果来定义挖掘模型的参数。然后,这些参数应用于整个数据集,以便提取可行模式和详细统计信息。 算法创建的挖掘模型可以采用多种形式,这包括: https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
2.什么是数据挖掘数据挖掘有哪些应用数据挖掘是一种从大量数据中自动发现隐藏信息和潜在关系的技术。它运用了统计学、机器学习和数据库等相关领域的知识与技术,可以帮助人们对数据进行全面深入的分析,提高数据的利用价值。 1.数据挖掘的定义和原理 数据挖掘是通过自动或半自动的手段,在庞大的数据集合中发掘出那些关于某些特定问题的明显或者隐含的、以前未知https://www.eefocus.com/e/1348975.html
3.数据挖掘的体系结构是什么数据挖掘的六大过程说了这么多数据挖掘中的经典算法,但是如果你不了解概率论和数理统计,还是很难掌握算法的本质;如果你不懂线性代数,就很难理解矩阵和向量运作在数据挖掘中的价值;如果你没有最优化方法的概念,就对迭代收敛理解不深。所以说,想要更深刻地理解数据挖掘的方法,就非常有必要了解它后背的数学原理。 https://blog.51cto.com/u_16213595/7898197
4.数据挖掘指什么意思帆软数字化转型知识库其基本原理是利用统计学、机器学习和数据库技术,从大量数据中自动提取有用的信息和知识。数据挖掘的核心步骤包括数据预处理、数据变换、模式识别、知识表达和评估等。数据预处理是指对原始数据进行清洗、归纳和转换,以便更好地进行数据分析。数据变换是指将数据转换为适合挖掘的形式,例如将文本数据转换为数值数据。模式https://www.fanruan.com/blog/article/572886/
5.什么是数据挖掘?定义重要性与类型SAP数据挖掘是利用高级分析工具从海量数据中提取有用信息的过程。https://www.sap.cn/products/technology-platform/hana/what-is-data-mining.html
6.数据挖掘的定义和解释数据挖掘的原理是什么? 数据挖掘涉及检查和分析大量信息,旨在发现有意义的模式和趋势。该过程包括收集数据、制定目标和应用数据挖掘技术。所选策略可能因目标而异,但数据挖掘的经验过程是相同的。典型的数据挖掘过程可能如下所示: 定义目标:例如,是否要进一步了解客户行为?是否要削减成本或增加收入?是否要识别欺诈?在数据https://www.kaspersky.com.cn/resource-center/definitions/data-mining
7.数据挖掘学习之路一:数据挖掘认识图论与社交网络说了这么多数据挖掘中的经典算法,但是如果你不了解概率论和数理统计,还是很难掌握算法的本质;如果你不懂线性代数,就很难理解矩阵和向量运作在数据挖掘中的价值;如果你没有最优化方法的概念,就对迭代收敛理解不深。所以说,想要更深刻地理解数据挖掘的方法,就非常有必要了解它后背的数学原理。 https://blog.csdn.net/qq_30868737/article/details/104215525
8.什么是网络爬虫金融数据挖掘:在金融领域,Python爬虫技术被用于实时抓取股票市场数据,并通过多个商业案例实战来体验金融数据挖掘的魅力。例如,通过Selenium库爬取新浪财经的股票实时数据。 robots.txt协议的工作原理和使用方法 robots.txt 协议是一种用于指导搜索引擎爬虫如何抓取和访问网站内容的规范。其工作原理如下: https://www.cda.cn/view/204973.html
9.一小时了解数据挖掘④:商务智能原理解读の数据挖掘九大定律一小时了解数据挖掘④:商务智能原理解读の数据挖掘九大定律 马云在2012年网商大会上的演讲中说过:“假如我们数据分析师有了一个数据预报台,就像为企业装上了一个GPS和雷达,企业的出海将会更有把握。”。这里的数据预报台就是下文所述的商业智能。 什么是商业智能(Business Intelligence) https://cda.pinggu.org/view/621.html
10.数据挖掘原理(豆瓣)我要写书评 数据挖掘原理的书评 ···(全部 0 条) 这本书的其他版本· ···(全部2) The MIT Press (2001) 7.5分12人读过https://book.douban.com/subject/1103515/
11.数据挖掘的原理结果评估和解释:在完成模式识别后,需要对挖掘结果进行评估和解释。 总之,数据挖掘的原理是通过对大规模数据进行收集、预处理、特征提取、模式识别和结果评估解释等步骤,发现隐藏在数据背后的模式和关联,从而更好地理解数据并做出决策。https://www.jianshu.com/p/72885557bce7
12.数据挖掘需要具备哪些思维原理?近几年,数据挖掘受到了学术界和工业界的广泛关注。所谓数据挖掘,指的是从数据库的大量数据中,揭示出隐含的、先前未知的、有潜在价值的信息的非平凡过程。日前,公众号“人工智能产业链联盟”发文称,如果你想从事数据挖掘工作的话,就需要具备以下四个思维原理。 https://time.geekbang.org/column/article/220218
13.数据挖掘原理数据挖掘原理 数据挖掘是一种从大规模数据中提取有用信息的过程。其主要目的是发现隐藏在数据背后的模式和关联,以便更好地理解数据并做出决策。以下是数据挖掘的原理。 1. 数据收集 在进行数据挖掘之前,必须先收集相关的数据。这些数据可以来自各种来源,包括数据库、文件、网络等。收集到的数据应该具有高质量和可靠性https://wenku.baidu.com/view/c70958051db91a37f111f18583d049649b660ee5.html
14.《数据挖掘原理》课件20240207.pptx《数据挖掘原理》PPT课件CATALOGUE目录数据挖掘概述数据预处理常用数据挖掘算法数据挖掘应用场景数据挖掘的挑战与未来发展数据挖掘概述01总结词数据挖掘是从大量数据中提取有用信息的过程。详细描述数据挖掘是一种从大量数据中提取有用信息和知识的技术,这些数据可以是结构化的、半结构化的或非结构化的。通过数据挖掘,可以https://www.renrendoc.com/paper/310737466.html
15.数据挖掘技术方法(精选十篇)以社交网站为例,如果要进行相关信息的数据挖掘,实现高质量与高效率,就要通过对海量数据的处理与整合,使用数据仓库技术及数据挖掘技术是个不错的选择。为最大限度节约时间及减少运行成本,构建数据仓库数据挖掘体系是至关重要的。一般体系结构如下图所示(图2)。构建了数据仓库体系,可以高效对数据进行管理与汇总,对相关https://www.360wenmi.com/f/cnkeyg31vygx.html
16.基于数据挖掘技术研究评审专家名单泄露风险数据挖掘的基本原理和适用场景 数据挖掘是从大量的、不完全的、随机的数据中,提取隐含在其中的、事先无法预知的、但是潜在有用的信息和知识的过程。数据挖掘技术可以用来支持商务智能应用,如顾客分析、定向营销、工作流管理、欺诈检测以及自动化销售等。例如,银行可以通过数据挖掘技术对客户的信用评级进行分析https://www.ahggzy.org.cn/showdoc?docid=05a0af6a3f4d4d70a4ad128f256e36b3&id=557a28633b8d41c1bee5227e57518c30&subid=2957ab2c43e947c69c7f5158c159f601
17.什么是数据清洗因此,在调查中应当尽量避免出现无效值和缺失值,保证数据的完整性。 二、数据清洗原理 利用有关技术如数理统计、数据挖掘或预定义的清理规则将脏数据转化为满足数据质量要求的数据,如图所示。 按数据清洗的实现方式与范围,可分为4种: 1、手工实现,通过人工检查,只要投入足够的人力物力财力,也能发现所有错误,但效率低http://www.chinaedg.com/e/wap/show.php?classid=85&id=260&style=0&bclassid=69&cid=85
18.《数据挖掘》简介风险评估中的应用;第11章主要介绍利用贝叶斯统计进行数据挖掘的思想、原理、方法及其在影像数据分类中的应用;第12章主要利用介绍了决策树与集成学习进行数据挖掘的思想、原理、方法及其在健康产业运行监测中的应用;第13章主要利用介绍人工神经网络学习进行数据挖掘的思想、原理、方法及其在上证综合指数收盘价预测分析中的https://lxy.tjcu.edu.cn/info/1334/2831.htm
19.数据挖掘:原理与应用中科院文献情报中心四层中文自科图书区在架上73.967/103.4-1 自动化所图书流通库在架上TP311.131/ 667 10浏览量 问图书管理员 馆际互借 点赞 收藏 访问借阅管理系统 分享 作者:朱小栋 ISBN:9787542938169 出版社:立信会计出版社 出版年:2013 数据挖掘原理、算法及应用 https://www.las.ac.cn/front/book/detail?id=f981ae4bea8ec7916300c4f700e294c8
20.《数据库原理及应用》(胡孔法主编)简介书评数据库系统 原理方法应用技术结合 数据库系统 原理方法应用技术结合 数据仓库 数据挖掘 大数据 作者:胡孔法主编出版社:机械工业出版社出版时间:2020年06月 手机专享价 ¥ 当当价降价通知 ¥38.20 定价 ¥45.00 配送至 北京市东城区 运费6元,满49元包邮 http://product.dangdang.com/28976983.html
21.利用数据挖掘的知识挖掘方法?Worktile社区1.2 数据挖掘的基本原理和流程 1.3 数据挖掘与机器学习的关系 二、数据挖掘的技术分类 2.1 监督学习 2.2 无监督学习 2.3 半监督学习 2.4 强化学习 三、数据挖掘的常用技术和算法 3.1 关联规则挖掘 3.2 分类与预测 3.3 聚类分析 3.4 离群点检测 3.5 时间序列分析 https://worktile.com/kb/ask/85519.html
22.R语言数据挖掘方法及应用(薛薇著)完整pdf扫描版[188MB]电子书下后续围绕数据挖掘应用的四大核心方面,安排了数据预测篇:立足数据预测未知,数据分组篇:发现数据中的自然群组,数据关联篇:发现数据的内在关联性,离群数据探索篇:发现数据中的离群点。每篇下各设若干章节,各章节从简单易懂且具代表性的案例问题入手,剖析理论方法原理,讲解R语言实现,并给出案例的R语言数据挖掘代码和结果https://www.jb51.net/books/630445.html