数据挖掘工程师需要的技能(17篇)

1.负责用户特征、车辆特征等挖掘,并能结合应用场景进行抽象建模;

2.负责用户意图、偏好及车辆等建模画像工作;

3.负责梳理各业务场景下用户生命轨迹,挖掘价值点,建立用户行为预测模型;

4.负责挖掘用户、车源的关联关系,实体对象相似性计算,构建供需匹配推荐模型

任职资格:

2.掌握常用的机器学习算法,如关联规则、分类算法、聚类算法;

3.掌握至少一门编程语言,如python、c、c++、java等;

4.理解数据库原理,掌握sql,熟练使用hadoop系列工具;

5.有较强的结构化思维、逻辑思维、数据思维,具备独立思考问题解决问题的能力;

6.有用户画像建模及推荐系统工作经验者优先。

职责:

1、参与k12教育行业大数据分析、大数据处理、数据挖掘等系统的设计和开发;

2、根据业务需求,基于海量学生学习和行为数据(如错题等)进行数学建模,设计并开发高效算法,并对模型及算法进行验证和实现,通过产品和技术提升教学和服务的效率和质量;

3、应用各种机器学习、数据挖掘技术进行数据分析与用户画像;

4、设计和构建基于用户行为特征的平台化画像服务能力,并建立用户画像产品的评估机制和监控体系;

3、具备深厚的数据建模(机器学习、数据挖掘)工作经验;有大数据处理实际开发经验(hadoop、spark,、flink、elasticsearch、hive、hbase);

4、熟悉各种特征提取、数据降维等数据处理技术;从事过用户画像等方面工作;

6、具备较强的沟通能力和优秀的逻辑思维能力,擅长从海量数据中发现有价值的规律;

7、自我驱动能力强,踏实勤勉,对有挑战的问题充满激情;愿意在创业氛围中工作;

8、能够阅读英文技术文档及论文,具有良好的自学能力,可以快速学习和掌握新的方法和技术;

职责:

1、进行住宅数据抽取、数据清洗、数据探索、数据建模分析等工作;

3、负责房地产估值数据系统的开发;

5、参与系统文档的撰写、维护。

岗位要求:

1、数学、统计学、计算机等专业硕士毕业,具有数据挖掘领域1年以上开发经验;

2、至少掌握python、scala、r等语言其中一种,python优先;

3、掌握关系型数据库oracle、mysql、postgresql的使用;

4、熟悉常见的机器学习算法如knn、决策树、随机森林数、逻辑回归、svm等算法,熟悉常见深度学习算法cnn、lstm和神经网络;

1.参与海量数据挖掘平台设计与开发;

2.负责底层测试数据的解析开发;

3.负责数据挖掘需求模型设计与开发;

4.负责海量数据挖掘的分布式部署及其调优工作。

任职资格:

3.对mysql及任意一个nosql有深入的了解;

4.做事具有条理性,具有良好的自学能力、分析问题以及解决问题的能力;

1、负责caic各类数据平台的搭建及系统开发实现;

2、负责系统技术运维及各类技术问题处理;

3、负责系统间接口数据标准规范制定;

2、实际项目开发经验;

3、framework、c#语言,熟练使用visual开发工具;

4、熟练使用office软件,数据库产品,精通sqlserver等大型数据库系统开发,熟练使用js框架,如jquery/yui等,并解读过源码,熟练多框架加分,精通ajax技术;

5、有良好的沟通能力、处理解决问题的能力、强烈的责任感和敬业精神;

6、工作认真负责,且主动性强,抗压能力强,能快速融入团队,有较强分析、沟通和协调能力。

2、负责大数据可视化研究及平台构建及优化工作;

3、负责数据挖掘分析体系的建设,并建立和规范数据挖掘模型标准;

4、协助项目团队做好数据和应用的对接,完成项目的执行及交付;

5、配合架构师进行技术攻关和核心挖掘算法改善。

3、精通r、matlab、python等至少一门数据分析语言和oracle、sqlserver、mysql、hbase等至少一门主流数据库;

4、至少熟悉一种大数据可视化平台echart,tableau等;

5、熟悉hadoop、hive、spark等大数据处理平台优先;熟悉java/web开发及面向对象的编程方式者优先;

6、良好的逻辑思维能力,对数据敏感,能够发现关键数据、抓住核心问题;

7、具备团队合作意识和创新意识,具有较强的学习能力和解决问题的能力,热爱研究算法和新技术者优先。

1、负责产品数据库研发,参与系统整体架构设计;

3、负责产品模块的数据层分析、设计、编码、测试;

4、能够独立完成产品数据层开发任务,负责各类数据接口开发;

5、负责各类型数据操作处理和兼容问题;数据库复杂sql开发和调优。

任职要求:

2、5年以上java开发经验,有springboot框架开发经验,计算机硕士以上学历可酌情考虑;

3、系统掌握数据库原理和知识,精通sql语法规则和特点,有3年以上sql编写经验。熟悉主流数据库技术,良好的数据库基础知识,具备良好的sql编写与优化能力,熟练掌握oracle、sqlserver、mysql、postgresql等数据库语言,能熟练应用分析函数、存储过程;

4、熟练掌握数据库脚本的性能调优方法,有大量数据处理或开发经验者优先;

5、熟悉数据库建模,熟练运用建模工具进行产品的分析和设计;

6、有较强的交流能力,能很好的理解项目需求;

7、具备良好的自学能力和独立解决问题的能力;

8、沟通能力良好,具备团队合作精神,能适应一定压力开展工作。

1.参与打造数据中心内容的规划、设计、开发和优化工作,实现高质量数据的互通与共享;

2.参与数据模型体系构建及数据主题设计和开发,搭建离线、实时数据仓库;

3.参与数据产品与应用的数据研发;

4.负责日常应用系统监控,发现异常问题及时分发,并跟进后续处理;

5.编写python程序,或etl技术完成日常数据抽取和整理任务,可独立进行数据分析;

1.熟悉etl开发、数据仓库设计流程,熟悉oracle,mssqlserver等主流数据库,表结构设计,存储过程编写;

2.熟练掌握常用linux命令,具备shell编程能力,熟练掌握python编程语言

3.具有较强的语言表达和沟通能力,良好的团队合作精神

4.逻辑思维能力强,对数据敏感,有较强学习能力和创新思维;

5.具有高度的责任感和敬业精神,能够承受较大的工作压力

(2)按要求完成数据分析报告、建模报告、数据报表等;

(3)对数据进行深度挖掘和建模,做运营和用户等各方面分析,深度挖掘运营优化和用户行为特征等,推动分析问题的解决,为业务决策提供日常支持;

(1)大专以上学历,统计、数学、计算机、软件专业优先;

(2)熟练使用python,mysql语言,具有一定的工程能力,完善的文档和注释习惯。熟悉jupyterlab远程代码编写环境,linux常用命令。会使用r,java,scala等语言更佳。

(3)熟悉数据分析过程,能够完成数据抽取、数据处理、数据建模、数据分析报告等任务;

(4)一定的数据挖掘/机器学习理论和技术基础,了解常用的数据挖掘算法如:聚类模型、线性回归、逻辑回归、分类模型、决策树模型等。

1、对现有大量数据源进行深度挖掘、解析、特征分析,利用数据建立建模;

2、核心指标的监控和跟踪分析,并对异常波动情况进行分析和问题定位;

3、负责监控数据的可视化和自动化;

职位要求:

2、了解lr、gbdt、xgboost、dnn和nlp等常用模型的开源工具,了解开源可视化工具;

5、做事细心,具有很强的责任心,独立解决问题的能力;

1、负责客户业务数据分析工作、挖掘数据分析需求

2、负责制定和实施数据分析方案

3、负责数据挖掘类项目的建模

4、负责根据数据分析和业务挖掘结果对客户业务提出优化建议或决策支持

5、负责通过数据持续优化业务流程

6、其他工作

2、熟练使用spss、sas或其他统计分析工具辅助工作

3、至少掌握一门数据分析语言,如r/python

4、对数据高度敏感,能够通过数据分析问题、解决问题;

5、有数据分析和挖掘项目优先经验者

1、对海量业务数据进行分析,并利用算法挖掘用户行为特征,发现潜在规律,建立机器学习算法并优化;

2、利用数据挖掘技术分析、预测用户的消费行为;

3、建立各种业务逻辑模型和数学模型,帮助公司改善运营管理,节省成本。

1、大学本科及以上学历;

3、本科5年以上同岗位工作经验,研究生3年以上同岗位工作经验;

4、对统计学和数据挖掘算法原理有较为深刻的理解,了解数据仓库思想,熟悉spss、sas、r、mahout等数据挖掘软件之一;

5、熟悉决策树、聚类、逻辑回归,关联分析、svm,贝叶斯等数据挖掘算法,有海量数据挖掘的项目经验;

6、有用户行为分析、用户建模、业务建模、数学建模经验优先;

7、良好的逻辑分析能力、分析问题和解决问题的能力,对数据敏感,良好的沟通能力。

1.负责mpp数据库日常维护,业务数据收集整理,对多种数据源的进行集成;

2.负责bi平台搭建和日常维护、需求调研、模型设计工作;

3.涉及部分etl设计、模型设计、开发工作;

4.协助解决bi平台运行日常问题;

5.本职位上班地点:佛山顺德区。

2.熟悉oracle、db2等主流数据库,并对分布式数据库有了解,如果熟悉mpp数据库优先考虑;

4.接触并使用过前端报表开发工作;

5.良好的沟通能力和独立工作能力,良好的团队合作意识与责任心,良好的文档编写能力。

1.负责软件测试、搭建测试环境,按照测试流程、计划以及对产品特性的把握,编写测试案例,确保测试目的的达成;

2.根据测试计划及测试案例,执行测试,在软件生命周期的各个阶段执行相应的测试;

3.根据测试结果,与开发部门等反复沟通测试情况,修正测试中发现的缺陷,完善软件性能;

4.整理测试文档,编写测试总结;

5.设计与编写自动化测试用例、测试工具。

2.有文件系统测试经验者、手机客户端、性能测试、开发及分析经验者优先;

3.熟悉测试理论与方法,熟悉软件测试过程,能够独立完成测试计划及方案设计等工作,有丰富的软件测试技术及文档编写经验;

4.熟悉linux基本操作以及linux环境搭建;

5.具有很好的沟通和协调、表达能力;

6.有较强的学习能力和主动性,责任心强,有良好的团队合作精神和严谨的工作态度,具有独立分析能力和独立解决问题的能力。

1.熟悉vmware虚拟化规划、部署、支持、维护和p2v迁移

2.规划、实施服务器项目、公有云、混合云项目

3.熟悉各类微软产品,尤其是ad及exchange,基础服务器的结构并能提出改善解决方案

4.服务器发生系统故障时的分析与解决

5.微软体系架构的设计

1.具有vcp或微软方面的认证证书

2.精通虚拟化及windows各类应用

3.大专以上学历,计算机专业,英语精通

4.有三年以上从事服务器工程师经验,性格稳重

5.从事过公有云或大型混合云工作者优先

6.有系统集成工作经验者优先

1、负责数据库环境建设、维护、安全管理;

2、负责数据库环境变更、故障异常分析处理;

3、负责数据库日常运行状况监控、容量规划、架构设计等;

4、对运行的数据库进行性能分析和优化,并推进优化工作的有效实施;

5、支持技术咨询,部分售前交流和文档编写;

1、熟悉oracle、sqlserver等主流数据库,具有2年以上数据库管理及数据集成项目经验;

2、精通数据库的安装配置,故障处理,备份恢复操作,能够独立完成数据库日常管理和运维工作;

4、能够熟练运用rac/dataguard/goldengate/streams等高可用技术;

5、有良好的实施方案撰写能力和丰富的实施经验;

6、具有良好的逻辑分析能力、沟通能力和协调能力;

1、负责软件需求的需求分析及需求排期,编写需求分析说明书;

2、负责软件详细设计、系统整合,维护和改进现有系统;

3、熟悉axure、mockplus、visio等软件

4、熟悉主流关系型数据库至少一种(oracle,sqlserver,db2,mysql);

2、具备较强的逻辑思维能力,学习能力和良好的系统思考能力;

3、沟通能力好,工作态度积极阳光,文字功底良好,理解能力强;

4、勤奋好学、积极主动、勇于承担责任迎接挑战,并具良好的团队合作精神;

THE END
1.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn“数据挖掘算法”是创建数据挖掘模型的机制。为了创建模型,算法将首先分析一组数据并查找特定模式和趋势。算法使用此分析的结果来定义挖掘模型的参数。然后,这些参数应用于整个数据集,以便提取可行模式和详细统计信息。 算法创建的挖掘模型可以采用多种形式,这包括: https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
2.什么是数据挖掘数据挖掘有哪些应用数据挖掘是一种从大量数据中自动发现隐藏信息和潜在关系的技术。它运用了统计学、机器学习和数据库等相关领域的知识与技术,可以帮助人们对数据进行全面深入的分析,提高数据的利用价值。 1.数据挖掘的定义和原理 数据挖掘是通过自动或半自动的手段,在庞大的数据集合中发掘出那些关于某些特定问题的明显或者隐含的、以前未知https://www.eefocus.com/e/1348975.html
3.数据挖掘的体系结构是什么数据挖掘的六大过程说了这么多数据挖掘中的经典算法,但是如果你不了解概率论和数理统计,还是很难掌握算法的本质;如果你不懂线性代数,就很难理解矩阵和向量运作在数据挖掘中的价值;如果你没有最优化方法的概念,就对迭代收敛理解不深。所以说,想要更深刻地理解数据挖掘的方法,就非常有必要了解它后背的数学原理。 https://blog.51cto.com/u_16213595/7898197
4.数据挖掘指什么意思帆软数字化转型知识库其基本原理是利用统计学、机器学习和数据库技术,从大量数据中自动提取有用的信息和知识。数据挖掘的核心步骤包括数据预处理、数据变换、模式识别、知识表达和评估等。数据预处理是指对原始数据进行清洗、归纳和转换,以便更好地进行数据分析。数据变换是指将数据转换为适合挖掘的形式,例如将文本数据转换为数值数据。模式https://www.fanruan.com/blog/article/572886/
5.什么是数据挖掘?定义重要性与类型SAP数据挖掘是利用高级分析工具从海量数据中提取有用信息的过程。https://www.sap.cn/products/technology-platform/hana/what-is-data-mining.html
6.数据挖掘的定义和解释数据挖掘的原理是什么? 数据挖掘涉及检查和分析大量信息,旨在发现有意义的模式和趋势。该过程包括收集数据、制定目标和应用数据挖掘技术。所选策略可能因目标而异,但数据挖掘的经验过程是相同的。典型的数据挖掘过程可能如下所示: 定义目标:例如,是否要进一步了解客户行为?是否要削减成本或增加收入?是否要识别欺诈?在数据https://www.kaspersky.com.cn/resource-center/definitions/data-mining
7.数据挖掘学习之路一:数据挖掘认识图论与社交网络说了这么多数据挖掘中的经典算法,但是如果你不了解概率论和数理统计,还是很难掌握算法的本质;如果你不懂线性代数,就很难理解矩阵和向量运作在数据挖掘中的价值;如果你没有最优化方法的概念,就对迭代收敛理解不深。所以说,想要更深刻地理解数据挖掘的方法,就非常有必要了解它后背的数学原理。 https://blog.csdn.net/qq_30868737/article/details/104215525
8.什么是网络爬虫金融数据挖掘:在金融领域,Python爬虫技术被用于实时抓取股票市场数据,并通过多个商业案例实战来体验金融数据挖掘的魅力。例如,通过Selenium库爬取新浪财经的股票实时数据。 robots.txt协议的工作原理和使用方法 robots.txt 协议是一种用于指导搜索引擎爬虫如何抓取和访问网站内容的规范。其工作原理如下: https://www.cda.cn/view/204973.html
9.一小时了解数据挖掘④:商务智能原理解读の数据挖掘九大定律一小时了解数据挖掘④:商务智能原理解读の数据挖掘九大定律 马云在2012年网商大会上的演讲中说过:“假如我们数据分析师有了一个数据预报台,就像为企业装上了一个GPS和雷达,企业的出海将会更有把握。”。这里的数据预报台就是下文所述的商业智能。 什么是商业智能(Business Intelligence) https://cda.pinggu.org/view/621.html
10.数据挖掘原理(豆瓣)我要写书评 数据挖掘原理的书评 ···(全部 0 条) 这本书的其他版本· ···(全部2) The MIT Press (2001) 7.5分12人读过https://book.douban.com/subject/1103515/
11.数据挖掘的原理结果评估和解释:在完成模式识别后,需要对挖掘结果进行评估和解释。 总之,数据挖掘的原理是通过对大规模数据进行收集、预处理、特征提取、模式识别和结果评估解释等步骤,发现隐藏在数据背后的模式和关联,从而更好地理解数据并做出决策。https://www.jianshu.com/p/72885557bce7
12.数据挖掘需要具备哪些思维原理?近几年,数据挖掘受到了学术界和工业界的广泛关注。所谓数据挖掘,指的是从数据库的大量数据中,揭示出隐含的、先前未知的、有潜在价值的信息的非平凡过程。日前,公众号“人工智能产业链联盟”发文称,如果你想从事数据挖掘工作的话,就需要具备以下四个思维原理。 https://time.geekbang.org/column/article/220218
13.数据挖掘原理数据挖掘原理 数据挖掘是一种从大规模数据中提取有用信息的过程。其主要目的是发现隐藏在数据背后的模式和关联,以便更好地理解数据并做出决策。以下是数据挖掘的原理。 1. 数据收集 在进行数据挖掘之前,必须先收集相关的数据。这些数据可以来自各种来源,包括数据库、文件、网络等。收集到的数据应该具有高质量和可靠性https://wenku.baidu.com/view/c70958051db91a37f111f18583d049649b660ee5.html
14.《数据挖掘原理》课件20240207.pptx《数据挖掘原理》PPT课件CATALOGUE目录数据挖掘概述数据预处理常用数据挖掘算法数据挖掘应用场景数据挖掘的挑战与未来发展数据挖掘概述01总结词数据挖掘是从大量数据中提取有用信息的过程。详细描述数据挖掘是一种从大量数据中提取有用信息和知识的技术,这些数据可以是结构化的、半结构化的或非结构化的。通过数据挖掘,可以https://www.renrendoc.com/paper/310737466.html
15.数据挖掘技术方法(精选十篇)以社交网站为例,如果要进行相关信息的数据挖掘,实现高质量与高效率,就要通过对海量数据的处理与整合,使用数据仓库技术及数据挖掘技术是个不错的选择。为最大限度节约时间及减少运行成本,构建数据仓库数据挖掘体系是至关重要的。一般体系结构如下图所示(图2)。构建了数据仓库体系,可以高效对数据进行管理与汇总,对相关https://www.360wenmi.com/f/cnkeyg31vygx.html
16.基于数据挖掘技术研究评审专家名单泄露风险数据挖掘的基本原理和适用场景 数据挖掘是从大量的、不完全的、随机的数据中,提取隐含在其中的、事先无法预知的、但是潜在有用的信息和知识的过程。数据挖掘技术可以用来支持商务智能应用,如顾客分析、定向营销、工作流管理、欺诈检测以及自动化销售等。例如,银行可以通过数据挖掘技术对客户的信用评级进行分析https://www.ahggzy.org.cn/showdoc?docid=05a0af6a3f4d4d70a4ad128f256e36b3&id=557a28633b8d41c1bee5227e57518c30&subid=2957ab2c43e947c69c7f5158c159f601
17.什么是数据清洗因此,在调查中应当尽量避免出现无效值和缺失值,保证数据的完整性。 二、数据清洗原理 利用有关技术如数理统计、数据挖掘或预定义的清理规则将脏数据转化为满足数据质量要求的数据,如图所示。 按数据清洗的实现方式与范围,可分为4种: 1、手工实现,通过人工检查,只要投入足够的人力物力财力,也能发现所有错误,但效率低http://www.chinaedg.com/e/wap/show.php?classid=85&id=260&style=0&bclassid=69&cid=85
18.《数据挖掘》简介风险评估中的应用;第11章主要介绍利用贝叶斯统计进行数据挖掘的思想、原理、方法及其在影像数据分类中的应用;第12章主要利用介绍了决策树与集成学习进行数据挖掘的思想、原理、方法及其在健康产业运行监测中的应用;第13章主要利用介绍人工神经网络学习进行数据挖掘的思想、原理、方法及其在上证综合指数收盘价预测分析中的https://lxy.tjcu.edu.cn/info/1334/2831.htm
19.数据挖掘:原理与应用中科院文献情报中心四层中文自科图书区在架上73.967/103.4-1 自动化所图书流通库在架上TP311.131/ 667 10浏览量 问图书管理员 馆际互借 点赞 收藏 访问借阅管理系统 分享 作者:朱小栋 ISBN:9787542938169 出版社:立信会计出版社 出版年:2013 数据挖掘原理、算法及应用 https://www.las.ac.cn/front/book/detail?id=f981ae4bea8ec7916300c4f700e294c8
20.《数据库原理及应用》(胡孔法主编)简介书评数据库系统 原理方法应用技术结合 数据库系统 原理方法应用技术结合 数据仓库 数据挖掘 大数据 作者:胡孔法主编出版社:机械工业出版社出版时间:2020年06月 手机专享价 ¥ 当当价降价通知 ¥38.20 定价 ¥45.00 配送至 北京市东城区 运费6元,满49元包邮 http://product.dangdang.com/28976983.html
21.利用数据挖掘的知识挖掘方法?Worktile社区1.2 数据挖掘的基本原理和流程 1.3 数据挖掘与机器学习的关系 二、数据挖掘的技术分类 2.1 监督学习 2.2 无监督学习 2.3 半监督学习 2.4 强化学习 三、数据挖掘的常用技术和算法 3.1 关联规则挖掘 3.2 分类与预测 3.3 聚类分析 3.4 离群点检测 3.5 时间序列分析 https://worktile.com/kb/ask/85519.html
22.R语言数据挖掘方法及应用(薛薇著)完整pdf扫描版[188MB]电子书下后续围绕数据挖掘应用的四大核心方面,安排了数据预测篇:立足数据预测未知,数据分组篇:发现数据中的自然群组,数据关联篇:发现数据的内在关联性,离群数据探索篇:发现数据中的离群点。每篇下各设若干章节,各章节从简单易懂且具代表性的案例问题入手,剖析理论方法原理,讲解R语言实现,并给出案例的R语言数据挖掘代码和结果https://www.jb51.net/books/630445.html