数据挖掘:基本概念理解何永灿

数据挖掘:从大量数据中挖掘有趣模式和知识的过程。

1、数据清理:消除噪声和删除不一致数据;

2、数据集成:多种数据源组合在一起。

4、数据变换:通过汇总或聚集操作,把数据变换和统一成适合挖掘的形式。

基本步骤、使用智能方法提取数据模式

根据某些兴趣度度量,识别代表知识的真正有趣的模式。

使用可视化和知识表示技术,向用户提供挖掘的知识。

#关系型数据库是数据挖掘最常见、最丰富的信息源,是数据挖掘研究的一种主要数据形式。

数据仓库:一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。

#特点:

1、数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构成。

2、通常,数据仓库称作数据立方体(datacube)的多维数据结构建模。其中每个维对应于模式中的一个或一组属性,而每个单元存放某种聚集度量值,如count或sum。

(数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据)

1、数据数据库的每一个记录代表一个事务。

2、通常一个事务包含一个唯一的事务标识号(trans_ID),以及一个组成事务的项的列表。

3、事务可以存放在表中,每个事务一个记录。

#数据挖掘功能用于指定数据挖掘任务发现的模式。(模式,根据不同的挖掘任务,所使用的不同的挖掘方法)

#数据挖掘任务任务可以分为两类:

1、描述性(descriptive):刻画目标数据中数据的一般性质;

2、预测性(predictive):在当前数据上进行归纳,一遍做出预测;

#描述数据的方法:

1、数据特征化

#数据特征化:目标数据的一般特性或特征的汇总。

#数据特征化的结果:饼图、条图、线图、多维数据立方体、包含交叉表在内的多维表。(也可以用广义关系或者规则(称特征规则)形式提供)

#例,挖掘任务:汇总一年之内在淘宝花费2万元以上的顾客特征。

#客户数据信息特征化的结果可以是顾客的概况:年龄在30~45岁、有工作、有很好的信用等级。

#数据挖掘应对允许用户在任意维下钻,一遍根据这些维度观察用户。

2、数据区分

#数据区分:将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。

#数据区分的结果:类似特征描述,但区分描述应当包括比较度量,以便帮助区别目标类和对比类。

#例,挖掘任务:比较两组顾客——定期购买手机的顾客和不经常购买这种产品的顾客。

#结果描述:提供这些顾客比较的概况

1、频繁模式:在数据中频繁出现的模式。

频繁项集:频繁的在事务数据集中一起出现的商品的集合;(如,超市中被许多顾客频繁地一起购买的牛奶和面包)

频繁子序列(又称序列模式):如,淘宝上顾客倾向于先购买手机,再购买保护套,然后再购买手机保护膜,这样一个模式就是一个(频繁)序列模式。

频繁子结构:涉及不同的数据结构形式(如,图、树、格),可以与项集或子序列结合在一起。(如果一个子结构频繁地出现,则称它为(频繁)结构模式)

#例,挖掘任务——哪些商品经常被一起购买。

结果1:buys(X,"computer")=>buys(X,"software")[support=1%,confidence=50%]

a、X是变量,代表顾客;

b、confidence:置信度或确信度,50%表示如果一味顾客买了电脑,则其会购买软件的可能性是50%;

c、support:支持度,1%意味着,所分析的所有事务的1%显示电脑和软件一起被购买;

结果2:简化为"computer=>software[1%,50%]"

#通常,一个关联规则被认为是无趣的而被丢弃;也就是,该规则不能同时满足“最小支持度阈值”和“最小置信度阈值”。

#频繁项集挖掘是频繁模式挖掘的基础。

#不同与分类和回归分析标记类的数据集,聚类(clustering)是分析数据对象(也就是样本),而不考虑类标号。

#许多情况下,样本数据并不存在标记,可以使用聚类产生数据组群的类标号。

#对象根据最大化类内相似性、最小化类间相似性的原则进行聚类或分组。也就是说,对象(一类样本)的簇(cluster,一类样本共同的特征)这样形成,使得相比之下在同一簇中的对象(样本)具有很高的相似性,而与其它簇中的对象很不相似。

#聚类分析所形成的每一个簇(也就是一种分类)都可以看做一个对象类,由它可以导出规则(符号此规则的样本就可以归为该簇(或该类))。

#聚类便于分类法的形成,将观测组织成类分层结构,把类似的事件组织在一起。

#离群点:数据集中,与其它样本的一般行为或模型不一致的样本。

#离群点数据分析也称作“离群点分析”或“异常挖掘”。

#有趣的模式代表知识,其特点:

1、易于被人理解;(也可以理解该挖掘方法的可解释性)

2、在某种确信度上,对于新的或检验数据是有效的;(也就是具有一定的泛化能力)

3、是潜在有用的;(即使当下没有挖掘任务需要,但未来可能会使用)

4、是新颖的;

#模式兴趣度的客观度量:支持度、置信度;(有助于识别有趣的模式)

1、规则的支持度,表示事务数据库中满足规则的事务所占的百分比;(可以表示概率,P(XUY),同时包含X和Y的事务的概率)

形式:support(X=>Y)=P(XUY)

2、规则的置信度,评估所发现的规则的确信程度(类似模型准确率);(可以去条件概率,P(X|Y),既包含X的事务也包含Y的概率)

形式:confidence(X=>Y)=P(X|Y)

#一般的,每个兴趣度都与一个阈值有关联,该阈值可以由用户控制(如刷选条件),低于阈值的规则可能反应噪声、异常或少数情况,可能不太有价值。

#其它兴趣度度量包括分类(IF-THEN)规则的准确率与覆盖率。

#模式兴趣度的主观度量:反应特定用户需求和兴趣,是基于用户对数据的信念。

#模式兴趣度度量是不可或缺的,一般在挖掘之后使用,可以跟进各种模式的兴趣度对所使用的模式进行排位,过滤掉不感兴趣的模式。也可以用来指导和约束发现挖掘模式的过程,通过剪去模式空间中不满足预先设定的兴趣度约束子集,提高搜素性能。

#涉及的知识领域:统计学、机器学习、模式识别、可视化、算法、数据库和数据仓库、信息检索、高性能计算和许多应用领域的大型技术等。

#统计学:研究数据的收集、分析、解释、表示。

#统计学模型:用随机变量及其概率分布,刻画目标样本的行为,被广泛用于对数据和数据类建模。

#统计学方法:用来汇总或描述数据集,也可以用来验证数据挖掘结果。

#许多统计学方法具有很高的计算复杂度,当用于分布在多个逻辑或物理站点上的大型数据集时,应小心设计和调整算法,以降低计算开销。

1、监督学习:分类的同义词。

#学习过程中的监督来自训练数据集中样本的标记;

2、无监督学习:聚类的同义词。

#输入的数据集中的样本没有被标记。

3、半监督学习:数据集中使用标记的和未标记的样本。

#标记的样本训练模型,未标记的样本用来进一步改进类边界(也就是改进簇的规则)。

4、主动学习:让用户在学习过程中扮演主动角色。

#要求用户(例如领域专家)对一个可能来自未标记的实例集或由学习程序合成的实例进行标记。

#特点:通过主动地从用户获取知识来提高模型质量。

#数据库系统因其在处理非常大的、相对结构化的数据集方面的高度可伸缩性而闻名。

#许多数据挖掘任务都需要处理大型数据集,甚至处理实时的快速流数据。因此,数据挖掘可以很好的利用可伸缩的数据库技术,一遍获得在大型数据集上的高效率和可伸缩性。

#数据挖掘任务可以用来扩充数据库系统,以便满足高端用户复杂的数据分析需求。

#新的数据库系统使用数据仓库和数据挖掘机制,已经在数据库的数据上建立了系统的数据分析能力。

#信息检索(IR):搜索文档或文档中信息的科学。

#文档可以是文本或多媒体,并且可能驻留在Web上。

#传统的信息检索与数据库系统之间的差别:

1、信息检索假定所搜索的数据是无结构的;

2、信息检索查询主要用关键词,没有复杂的机构(不同与数据库系统中的SQL查询)。

#信息检索的典型方法——概率模型。

#文档的语言模型:生成文档中词的包的概率密度函数,语言模型之间的相似性可以度量两个文档之间的相似度。

#一个文本文档集的主题可以用词汇表上的概率分布建模,称作主题模型。一个文本文档可以涉及多个主题,可以看做主题混合模型。

#通过集成信息检索模型和数据挖掘技术,可以找出文档集中的主要主题,对集合中的每个文档,找出所涉及的主要主题。

1、商务而言,理解顾客、市场、供应、资源、竞争对手等信息,是非常重要的。

2、商务智能中的联机处理工具依赖于数据仓库和多维数据挖掘。

3、分类和预测计算是商务智能预测分析的核心。。

1、Web搜索引擎本质上是大型数据挖掘应用。

2、通常,用户查询的搜索结果用一张表返给用户(有时称作采样(hit)),包含网页、图像和其它类型的文件。

3、搜索引擎不同于网络目录,网络目录由人工编辑管理,搜索引擎按算法运行,或者是算法和人工输入的混合。

4、搜索引擎对数据挖掘提出了巨大挑战,大量的并且不断增加的数据,需要数以万计的计算机组成计算机云,共同挖掘。

#数据挖掘方法应该考虑数据的不确定性、噪声、不完全性等问题。

1、挖掘各种新的知识类型

2、挖掘多维空间中的知识

#在不同抽象层的多维(属性)组合中搜索有趣的模式,称为探索式多维数据挖掘。

#在数据立方体中挖掘知识可以显著的提高数据挖掘的能力和灵活性。

3、数据挖掘——跨学科的努力

#通过集成来自多学科的新方法可以显著增强数据挖掘的能力。

4、提升网络环境下的发现能力

#大部分的数据对象驻留在连接或互连的环境中,无论是Web、数据库关系、文件还是文档。

#多个数据对象之间的语义链接可以用来促进数据的挖掘。

5、处理不确定性、噪声或不完全数据

#错误和噪声可能干扰数据挖掘过程,导致错误的模式出现。

#数据清理、数据预处理、离群点检测与删除、不确定性推理,都是需要与数据挖掘过程集成的技术。

6、模式评估和模式或约束指导的挖掘

#数据挖掘模式是否有趣,要根据用户来定。

#模式的价值是基于给定用户类、用户确信度或期望来定的。

#通过使用兴趣度度量或用户指定的约束指导发现过程,可以产生更有趣的模式,压缩搜素空间。

#挖掘过程需要思考的问题:

#如何与数据挖掘系统交互?

#如何在挖掘过程中融入用户的背景知识?

#如何可视化与理解数据挖掘的结果?

1、交互挖掘

#数据挖掘过程应该是高度交互的。

#构建灵活的用户界面和探索式挖掘环境,是非常重要的,以便用户与系统交互。

#交互式挖掘允许用户在挖掘过程中动态的改变搜索的聚焦点,根据返回的结果提炼挖掘请求,并在数据和知识空间交互的进行下钻、切块、旋转,动态的探索“立方体空间”。

2、结合背景知识

#应把背景知识、约束、规则和关于所研究领域的其他信息结合到挖掘过程中,这些知识可用于模式评估,指引搜索有趣的模式。

3、特定的数据挖掘和数据挖掘查询语言

#查询语言(如SQL)在灵活的搜索中扮演了重要的角色,因为它允许用户提出特定的查询。

4、数据挖掘结果的表示和可视化

#数据挖掘系统是交互的(如搜索引擎),这点极其重要,这要求系统采用有表达能力的知识表示,以及用户友好的界面和可视化技术。

1、数据挖掘算法的有效性和可伸缩性

#有效性、可伸缩性、性能、优化、实时运行能力,是驱动驱动数据挖掘算法开发的关键标准。

2、并行、分布式和增量挖掘算法

#算法特点:把数据划分成若干“片段”,每个片段并行处理,搜索模式。

#原因:数据集容量巨大、数据的广泛分布、一些数据挖掘算法的计算复杂性。(有些数据挖掘过程的高开销和输入的增量特点,推动了增量数据挖掘)

#增量挖掘与新的数据更新结合在一起,而不必“从头开始”挖掘全部数据。

#增量算法增量的进行知识修改,修正和加强先前业已发现的知识。

#并行处理可以交互(如多个刷选条件同时执行),来自每部分的模式最终合并在一起。

#云计算和集群计算,使用分布式和协同的计算机处理超大规模计算任务,是并行数据挖掘研究的活跃主题。

#数据库类型的多样性给挖掘任务带来了挑战:

1、处理复杂的数据类型

2、挖掘动态的、网络的、全球的数据库

#难点:众多数据源被国际互联网和各种网络连接在一起,形成了一个庞大的、分布的和异构的全球信息系统和网络,而且数据拥有结构化、半结构化和非结构化的不同数据语义。

#好处:与从孤立的数据库的小数据集中发现的知识相比,挖掘庞大的、互连的信息网络可能帮助在异种数据集中发现更多的模式和知识。

1)需求是发明之母。

2)数据挖掘是从海量的数据中发现有趣模式的过程。

#作为知识发现过程,数据挖掘通常包括:数据清理、数据集成、数据选择、数据变换、模式发现、模式评估、知识表示。

3)有趣的模式

#有趣的模式:如果一种模式在某种确信度上对于检验数据是有效的、新颖的、潜在有用的,并且易于被人理解的。

#有趣的模式代表知识。

#模式兴趣度度量,无论是客观的还是主观的,都可以用来指导发现过程。

4)数据挖掘的多维视图

#维:指数据、知识、技术、应用。

5)只要数据对目标应用有意义,数据挖掘可以在任何类型的数据上进行。

6)数据仓库

#数据仓库中的数据,来自多个数据源,在一种同一的模式下存放,并且通常是汇总的。

#数据仓库提供一些数据分析能力,称作联机分析处理。

7)多维数据挖掘

#多维数据挖掘(又称探索式多维数据挖掘):把数据挖掘的核心技术与基于OLAP的多维分析结合在一起。在不同的抽象层的多维(属性)组合中搜索有趣的模式,从而探索多维空间。

8)数据挖掘功能

9)数据挖掘研究

#研究领域:挖掘方法、用户交互、有效性和可伸缩性、处理多种多样的数据类型。

THE END
1.简要概括数据挖掘的定义数据挖掘就是通过一系列技术手段,从看似杂乱无章的数据中提取出有价值的信息。它就像一把“钥匙”,帮助我们打开看似封闭的大门。无论是个体用户的个性化推荐,还是企业的市场预测,甚至是医疗、金融等行业的风险控制,数据挖掘都起到了举足轻重的作用。它让我们看到了“数据背后的故事”,也让我们能更好地理解和利用这些https://wenku.baidu.com/view/379da718b3717fd5360cba1aa8114431b80d8e4c.html
2.数据挖掘是对业务和用户的理解数据挖掘是对业务和用户的理解 数据挖掘有很高的专业门槛;然而用研、产品、运营们也不一定就会被数据科学家们“碾压”了。这篇文章不是数据挖掘教程,而是让用研、产品、运营及其它相关岗位的同学了解: 数据挖掘的特点; 数据挖掘可以做哪些事情、有什么应用价值; https://www.cda.cn/view/120094.html
3.面向学生行为理解的数据挖掘方法研究【摘要】:近几年来,随着教育数据挖掘领域的快速兴起,结合数据挖掘方法对学生行为数据进行分析成为一种流行趋势,主要致力于对未来行为与兴趣的发现、对学生学习表现的预测、以及学生个人或者群体特征的提取。学生行为模式的相关研究被广泛地关注,教育学、社会学等多个领域的研究发现学生的行为模式对于其学习表现、情感状态https://cdmd.cnki.com.cn/Article/CDMD-10358-1018105004.htm
4.数据挖掘论文无论是在学习还是在工作中,大家都有写论文的经历,对论文很是熟悉吧,通过论文写作可以培养我们独立思考和创新的能力。你知道论文怎样才能写的好吗?下面是小编整理的数据挖掘论文,欢迎大家借鉴与参考,希望对大家有所帮助。 数据挖掘论文 篇1 【摘要】由于我国的信息技术迅速发展,传统档案管理的技术已经不能满足现代的信https://www.unjs.com/lunwen/f/20220924130749_5650839.html
5.终于有人把数据挖掘讲明白了快速增长的海量数据被收集、存放在大型数据库中,没有强有力的工具,以人类现有的能力很难理解它们。因此,有人说大数据是数据“坟墓”。当采用数据挖掘工具进行数据分析时,可以发现隐藏在大数据之中重要的数据内容、模式,能对商务决策、知识库、科学和医学研究等做出巨大贡献。为解决数据和信息之间的鸿沟,我们应系统地学https://www.51cto.com/article/698009.html
6.干货▏面向大数据的时空数据挖掘相较于传统的数据挖掘技术,时空数据挖掘研究还远未成熟。对于结构复杂且形式多样的时空数据,如何寻找合适的数据挖掘算法或者技术,可以挖掘什么有价值的模式,如何对这些模式进行分析?这些问题的解决都迫切需要构建一个时空数据挖掘的理论框架。清晰定义的理论框架将会给该研究领域带来理论上的指导,一方面可更好地理解时空模式https://czj.guiyang.gov.cn/new_site/zwgk_5908373/zszc_5908415/202205/t20220531_74514473.html
7.数据挖掘与分析心得体会数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进! 2、数据分析 数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。https://www.360wenmi.com/f/file46470luq.html
8.《医学数据挖掘与实践》实验指导医学数据挖掘与实践教学运行与管理通过巩固和加深数据挖掘基本知识的理解,提高运用学习医学数据的数据挖掘,用软件求解操作培养学生的逻辑思维,掌握基本的数据挖掘能力,有利于专业的知识储备。本实验指导共9项实验,分别从R软件的使用、数据预处理、k近邻、决策树、随机森林,聚类、关联规则算法运用医学数据,指导学生操作,实验过程中要求学生能分析实际问https://www.gxtcmu.edu.cn/ggxy/jysjs1/xxglyxxxtjysyxxxgcjyshs/jxyhygl2/yxsjwjysj/content_29934
9.数据挖掘的三要素是什么帆软数字化转型知识库数据挖掘的三要素是数据、算法、和业务理解。数据是数据挖掘的基础,所有的分析、模型建立都离不开高质量的数据。算法是数据挖掘的核心,通过各种算法可以从数据中提取出有价值的信息和模式。业务理解是数据挖掘的应用目标,只有深入理解业务,才能将数据挖掘的结果应用到实际中去,并产生实际的价值。数据的质量直接影响数据https://www.fanruan.com/blog/article/593842/
10.数据挖掘的含义是什么(1)数据源必须是真实的、大量的、有噪声的; (2)发现的是用户感兴趣的知识; (3)发现的知识是可接受、可理解、可运用的; (4)并不要求发现放之四海而皆准的知识,仅支持特定的发现问题。 数据挖掘以解决实际问题为出发点,核心任务是对数据关系和特征进行探索。一般而言,数据挖掘可以分为两类:一类是有指导学习或https://www.dongao.com/zjjs/zy/202106173463769.shtml
11.南京邮电大学李涛深度解读大数据时代的数据挖掘新闻中心不同的学者对数据挖掘有着不同的理解,但个人认为,数据挖掘的特性主要有以下四个方面: 1.应用性(A Combination of Theory and Application):数据挖掘是理论算法和应用实践的完美结合。数据挖掘源于实际生产生活中应用的需求,挖掘的数据来自于具体应用,同时通过数据挖掘发现的知识又要运用到实践中去,辅助实际决策。所以https://www.cbdio.com/BigData/2017-03/16/content_5471545.htm
12.数据挖掘的基本步骤是什么?理解业务目标:首先要明确数据挖掘的目的是什么,是为了预测销售额、识别欺诈行为还是其他目标。只有明确了业务目标,才能有针对性地进行数据挖掘分析。 数据理解:收集相关数据,理解数据的含义、格式、质量等特征。这一步通常包括数据收集、数据描述性统计、数据可视化等方法,以便更好地理解数据。 数据准备:对数据进行清洗、https://www.mbalib.com/ask/question-1ff33c04b2a8f83d1aff9875a50d017f.html
13.数据挖掘的定义好处应用顶级技术做数据挖掘的好处当问到 "什么是数据挖掘 "时,让我们把它分解成数据科学家和分析师在处理数据挖掘项目时采取的步骤。 1. 理解业务 公司的现状是什么,项目的目标是什么,什么定义了成功? 2. 理解数据 弄清楚解决这个问题需要什么样的数据,然后从适当的渠道收集数据。 https://blog.csdn.net/Bluehost_China/article/details/126854519
14.什么是数据挖掘?为什么它如此重要?数据挖掘企业可以通过多种方式挖掘数据,并用于多种目的。以下是数据挖掘者使用的最流行的数据排序策略: 分类 数据组织者决定预定义的分类。原始数据根据其质量被划分为多个类别。理解这一点的一个简单例子是对葡萄干过敏的人进行分类,对不过敏的人则进行分类。本示例将解释如何使用两个指定的类来安排数据批。 https://www.fromgeek.com/telecom/524877.html
15.数据挖掘论文精品[15篇]数据挖掘论文时间:2023-07-29 08:37:13 论文 我要投稿 数据挖掘论文精品[15篇] 无论是在学校还是在社会中,大家都尝试过写论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。还是对论文一筹莫展吗?下面是小编为大家收集的数据挖掘论文,欢迎大家借鉴与参考,希望对大家有所帮助。 数https://www.ruiwen.com/lunwen/7963711.html
16.数据挖掘机器之心关联规则算法(apriori)是最有影响的挖掘布尔关联规则频繁项集的算法之一,它由R. Agrawal和R. Srikant于1994年首次提出,简单、易理解、对数据的要求低,常常用于市场篮分析等领域。该过程通过对交易资料库中的纪录进行资料挖掘,这种关联的发现可以帮助零售商了解哪些商品频繁的被顾客同时购买,从而帮助他们开发更好的营销https://www.jiqizhixin.com/graph/technologies/7904de1e-5ab5-4f0a-aa60-693cb2978766
17.什么是数据挖掘?定义重要性与类型SAP同时,随着用户对工具越来越熟练,对数据库理解越来越深入,他们在数据探索和分析中也能更有创意。 为什么要使用数据挖掘? 数据挖掘的主要优势,在于能够从来自各种数据源的海量数据中发现模式和关系。从社交媒体、远程传感器到日益详细的产品动态和市场活动报告,随着这些五花八门的数据源生成越来越多的数据,数据挖掘也成为https://www.sap.cn/products/technology-platform/hana/what-is-data-mining.html