常见的监督学习算法人工智能

监督学习是机器学习的一种,通过训练算法使用标记示例,预测未见示例。其目标是学习将输入数据映射到输出标签的函数。

在监督学习中,算法接收一个训练数据集,该数据集包含一系列的输入示例以及它们对应的正确输出标签。通过使用这个数据集,算法能够学习出一个函数,用来预测新的示例的输出标签。为了评估算法的性能,我们通常会将一个独立的测试数据集用于验证学习函数的准确性。这个测试数据集是用来检验算法在未见过的数据上的表现。

线性回归是一种用于预测连续值的方法,它假设特征和目标之间的关系是线性的。其目标是找到最佳拟合线,使得预测值与真实值之间的误差平方和最小化。此外,线性回归还可用于多项式回归,通过拟合多项式曲线来适应数据。

逻辑回归是一种用于二进制分类的算法。它是一种回归算法,因为它预测连续值,但它常用于分类任务,因为它使用逻辑函数将预测值转换为概率。逻辑回归之所以被称为“逻辑”回归,是因为它使用逻辑函数(也称为sigmoid函数)来预测样本属于某个类别的概率。

它的目标是使用优化算法(例如梯度下降)学习一组权重,这些权重可用于预测样本属于特定类别的概率。通过对预测概率进行阈值化来进行预测。

支持向量机算法是一种线性分类器,试图在高维空间中找到最大程度分离两个类的超平面,用于分类和回归。

SVM通过学习一组定义超平面的权重来工作。选择超平面,使其最大程度地分离类,并与每个类的最近示例具有最大距离(称为边距)。一旦找到超平面,SVM就可以用于对新示例进行分类,方法是将它们投影到特征空间并根据它们落在超平面的哪一侧来预测类别。核函数可以是线性的,也可以是非线性的,它将数据转换到更高维的空间中,允许支持向量机在转换后的空间中找到线性边界。

SVM对于数据是高维且线性不可分的任务特别有用,因为它们可以通过将输入数据映射到高维空间(它可能是线性可分的)来学习非线性决策边界,然后学习该空间中的决策边界(也称为内核技巧)。

决策树算法是一种非线性分类器,它根据用于分类和回归的树结构进行预测。它的工作原理是根据特征值递归地将输入空间划分为多个区域。

决策树的工作原理是根据特征值递归地将输入空间划分为多个区域。在树中的每一步,算法都会根据基尼指数或信息增益等分割标准选择最能分割数据的特征。该过程一直持续到达到停止标准为止,例如树的最大深度或叶节点中示例的最小数量。

为了对新示例进行预测,该算法根据特征值跟踪树的分支,直到到达叶节点。然后根据叶节点中示例的多数类(对于分类任务)或叶节点中示例的平均值或中值(对于回归任务)进行预测。

决策树是一种简单且可解释的模型,并且易于实施。它们的训练和预测速度也很快,并且可以处理各种数据类型。然而,决策树可能容易过度拟合,尤其是当允许树长得非常深时。

K最近邻算法是一种非参数方法,它根据给定测试示例的K最近示例的多数类进行预测,用于分类和回归。

KNN的工作原理是存储所有的训练样例,然后根据特征空间中最接近测试样例的K个样例进行预测。K的值是从业者选择的超参数。对于分类,基于K个最近示例的多数类进行预测。对于回归,根据K个最近示例的目标变量的平均值或中值进行预测。

KNN的计算量可能很大,因为该算法需要计算测试示例与所有训练示例之间的距离。它也可能对K和距离度量的选择敏感。它还用作与更高级算法进行比较的基线模型。

朴素贝叶斯算法是一种概率分类器,在给定某些特征存在的情况下,根据某些事件发生的概率进行预测。朴素贝叶斯做出“朴素”假设,即在给定类别标签的情况下,数据中的所有特征都相互独立。这个假设通常是不现实的,但尽管有这个假设,该算法在实践中仍然运行良好。

朴素贝叶斯算法有多种变体。高斯朴素贝叶斯用于连续特征,并假设特征服从正态分布。多项式朴素贝叶斯用于计数数据,并假设特征服从多项式分布。伯努利朴素贝叶斯用于二元特征,并假设特征服从伯努利分布。朴素贝叶斯是一种简单高效的算法,易于实现,训练和预测速度快。

神经网络是一种受大脑结构和功能启发的机器学习算法。它们由分层连接在一起的人工神经元组成,称为节点或单元。神经网络可以学习执行范围广泛的任务,包括分类、回归和生成序列。它们特别适合需要学习输入数据和输出之间复杂关系的任务。

神经网络使用优化算法(例如随机梯度下降)进行训练,以最小化衡量预测输出与真实输出之间差异的损失函数。在训练期间调整节点之间连接的权重以最小化损失。

随机森林算法是一种集成方法,将多个决策树的预测结合起来进行最终预测。通过在训练数据的不同子集上训练许多决策树,然后对各个树的预测进行平均来创建随机森林。这个过程称为自举,因为树是在数据的自举样本上训练的。bootstrapping过程将随机性引入到树训练过程中,这有助于减少过度拟合。

随机森林广泛用于分类、回归和特征选择等任务。它们以处理具有许多特征的大型数据集的能力以及在广泛任务中的良好表现而闻名。它们还可以抵抗过度拟合,这使它们成为许多机器学习应用程序的不错选择。

Boosting是一种机器学习技术,涉及训练一系列弱模型并将它们的预测结合起来做出最终预测。在boosting中,弱模型被依次训练,每个模型都被训练来纠正前一个模型的错误。最终预测是通过使用加权多数票组合各个弱模型的预测来做出的。各个模型的权重通常是根据模型的准确性来选择的。Boosting通常用于分类和回归等任务。它以在广泛的任务上实现高精度的能力以及处理具有许多特征的大型数据集的能力而闻名。

THE END
1.人工智能监督学习算法监督学习算法是机器学习中的一种方法,它通过使用标记的训练数据来学习一个模型,该模型能够对新的、未见过的数据进行预测或决策。在监督学习中,每个训练样本都包含输入变量(通常表示为特征)和期望的输出变量(也称为标签或目标)。算法的目标是学习输入和输出之间的映射关系,以便能够准确预测新样本的输出。 https://blog.csdn.net/xiaoyingxixi1989/article/details/141904659
2.开发监督学习最常见的五种算法,你知道几个?在机器学习中,无监督学习(Unsupervised learning)就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习(Supervised learning)就是有训练样本,带有属性标签,也可以理解成样本有输入有输出。 所有的回归算法和分类算法都属于监督学习。回归(Regression)和分类(Classification)的算法区别在于https://cloud.tencent.com/developer/article/1057751
3.?以下哪些机器学习算法是有监督学习算法?中央全面深化改革领导小组第三十五次会议指出,()是生态文明建设和环境保护的重要基础。要把()、()、()放在重要位置,采取最规范的科学方法、最严格的质控手段、最严厉的惩戒措施,深化环境监测改革,建立环境监测数据弄虚作假防范和惩治机制,确保环境监测数据全面、准确、客观、真实。https://www.shuashuati.com/ti/59389c6f18d6495fbffe7e741df8b4ab.html
4.监督学习有哪些常见算法?都是如何应用的监督学习有哪些常见算法?都是如何应用的 掌握一些最常用的监督学习算法能够帮助我们解决实际问题,本文将通过很多实例进行详细介绍。 ?什么是监督学习? 监督学习是机器学习的子集,监督学习会对机器学习模型的输入数据进行标记,并对其进行练习。因此,监督模型能最大限度地预测模型的输出结果。https://www.51cto.com/article/712484.html
5.BAT机器学习面试1000题系列(二)面试笔试整理3:深度学习机器学习面试问题准备(必会) 105.当机器学习性能遭遇瓶颈时,你会如何优化的? 可以从这4个方面进行尝试:基于数据、借助算法、用算法调参、借助模型融合。当然能谈多细多深入就看你的经验心得了。 这里有一份参考清单:机器学习系列(20)_机器学习性能改善备忘单 https://www.jianshu.com/p/4a7f7127eef1
6.2机器学习常见类型(算法种类)机器学习算法可以分为有监督学习文章主要介绍了机器学习的常见类型,包括监督学习、无监督学习、强化学习。监督学习是利用有“正确答案”的数据集训练模型进行预测,有回归和分类问题;无监督学习是从无标签或相同标签的数据中找结构,如聚类;强化学习是根据环境状态决定动作以获取最大收益。还介绍了相关算法的历史及典型应用等。 https://juejin.cn/post/7256975111563411513
7.前沿:机器学习在金融和能源经济领域的应用分类总结该文献(见文后reference)通过对2005年-2018年间发表的130多篇论文进行梳理分析表明,支持向量机(SVM)、人工神经网络(ANN)和遗传算法(GAs)是能源经济学论文中最常用的方法。同时,文章还对机器学习的方法、应用、优缺点以及未来可以拓展的领域进行了细致的总结。主要聚焦于以下几个问题:1、哪些方法在能源经济学中被频繁http://www.360doc.com/content/20/0526/21/45289182_914727499.shtml
8.机器学习(二)之无监督学习:数据变换聚类分析无监督学习算法只有输入数据,而没有已知的输出标签(label),我们需要从这些数据中学习到信息。常见的无监督学习包括数据集变换和聚类。 数据集的无监督变换(unsupervised transformation)是创建数据新的表示的算法,与数据的原始表示相比,新的表示可能更容易被人或其他机器学习算法所理解。无监督变换的一个常见应用是降维(https://www.flyai.com/article/516
9.机器学习中的有监督和无监督都包括些什么?机器学习算法通常分为有监督的(训练数据有标记答案)和无监督的(可能存在的任何标签均未显示在训练算法中)。有监督的机器学习问题又分为分类(预测非数字答案,例如错过抵押贷款的可能性)和回归(预测数字答案,例如下个月在曼哈顿商店出售的小部件的数量)。 https://www.cda.cn/view/27593.html
10.2021届计算机科学方向毕业设计(论文)阶段性汇报在本阶段,我们主要的工作进展有以下几点:1.为了提高实验效率,我们搭建了可用于多机器并行的训练框架,并基于此复现了传统的强化学习算法,为之后的实验提供对比。 2.基于之前的工作调研结果,提出了基于深度强化学习的多能体拟人化方法。 朱茂生 基于多模态机器学习的生存风险预测方法 研究内容及进度摘要:我在第一次https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3943
11.AI知识点汇总人工智能电脑百科分类:按学习方式可以分为监督学习(包括半监督学习)、无监督学习、强化学习、迁移学习。 2.2 监督学习 概念:机器学习的一种,通过学习许多有标签的样本,得到特征值和标记值之间的对应规律,然后对新的数据做出预测。 分类:根据输入数据x预测出输出数据y,如果y是整数的类别编号,则称为分类问题,算法包括:决策树、随机森https://www.isolves.com/it/ai/2022-02-21/50223.html
12.哪些算法用于解决深度学习问题6、常用的无监督学习算法主要有三种:聚类、离散点检测和降维,包括主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。简述深度学习的基本方法。深度学习算法以下三种:回归算法。回归算法是试图采用对误差的衡量来探索变量之间的关系的https://zhidao.baidu.com/question/443445629766969884.html
13.一周AI最火论文模型是否遗忘了我删除的数据?这个算法可以评估!本周关键词:新冠数据、无监督学习、3D人脸检测 本周最火学术研究 一种评估机器学习模型是否遗忘了数据的方法 考虑以下场景:有几个提供者,正计划为开发深度学习模型来解决分类任务提供数据。突然,提供者之一决定离开并要求删除数据,但更大的问题是,怎么确保该模型“忘记”这份数据。 https://news.hexun.com/2020-04-27/201164779.html