数据垄断形成机制与监管分析

摘要:数据垄断及其对市场竞争的影响是数字平台反垄断分析的一个疑难问题。守门人地位、切换成本、人工智能算法和数据保护制度不健全等因素,加剧了电子商务、搜索引擎、移动操作系统、社交媒体等数字平台公司对数据的控制,推动形成集中度高甚至赢者通吃的市场结构。数据垄断既能够通过多种渠道增进市场效率,又容易限制和排除竞争,剥夺用户和第三方厂商利益;数据反垄断监管应当充分考虑数据兼具公共产品和私人产品的复杂特征,围绕数据保护、共享、移植、安全、算法和使用等环节的问题,在约束数据领域不当行为、探索数据公地建设、完善非歧视规则和鼓励数据去中心化存储等方面形成较为完善的制度。

关键词:数据监管;数据市场;数字平台;反垄断

基金项目:中国社会科学院登峰战略“产业经济学优势学科项目;中国社会科学院创新工程项目“新发展阶段中国竞争政策与反垄断研究”(SKGJCX2021-03)。

一、问题提出

二、典型领域数据垄断的表现形式

数字市场的网络效应、切换成本和其他进入壁垒,使市场结构趋于集中和单一公司主导。一旦市场由单一公司主导,其他竞争者和潜在进入者将难以与其竞争,竞争过程从市场中的竞争转向为垄断市场和剥夺其他参与者利益而竞争。一些风险资本分析报告发现,存在一个主导平台与竞争压力隔离开来的创新杀戮区,投资者偏好避免向与数字平台直接或间接竞争的企业投资,从而削弱数字市场的创新和创业精神。根据欧盟、美国反垄断监管机构的调查,数据垄断集中体现在电子商务、搜索引擎、移动操作系统、社交媒体等数字平台领域。尽管下面几个数字平台公司都是总部位于美国的公司,但是由于业务和商业模式相同,其利用访问和控制数据能力谋求市场势力和实施垄断行为的形式,对分析我国数字平台公司垄断行为具有参考价值。

(一)电子商务

(二)搜索引擎

(三)移动操作系统

(四)社交媒体

三、数据垄断的形成机制

笔者认为,虽然数据具有非竞争性特点,即一方的使用不会影响另一方的使用,但数字平台可能利用以下几个机制采取排他性策略,为竞争者访问和使用数据设置技术限制,保护现有企业免受竞争。

(一)利用守门人地位,控制业务用户访问潜在客户

(二)固化切换成本,限制数据移植

(三)利用人工智能和机器学习,实施算法垄断

(四)保护制度不完善,加剧平台过度收集和滥用数据

数字平台吸引更多客户积累更多数据获得市场主导地位,在用户一边体现为隐私和数据保护价格以及传统客户常规价格的提高。数字平台垄断行为可能不再采取直接提高产品和服务价格的行为,而是表现为通过大量收集、汇聚和使用数据,变相提高消费者支付的价格。实际上,隐私和数据保护可以被视为产品和服务的质量特征。厂商经常向消费者隐匿收集、汇聚、使用和出售数据的信息,消费者难以意识到其数据被过度收集、汇聚和使用,表明缺乏隐私不仅是一个价格,而且是一个不可观察的价格。由于消费者与使用其数据的平台之间存在信息不对称,平台可能通过欺骗性承诺获得消费者数据,出现阻碍公平数据交易的行为偏差,数字平台可以利用这一行为偏差操纵用户行为以谋取利益。一些文献发现数字平台利用行为偏差来说服消费者交出数据或购买产品。数字平台越来越有能力通过数据聚合和分析准确预测消费者行为,减少平台与消费者之间的信息不对称,改善市场运作。例如,亚马逊为一种商业方法申请了专利,该商业方法能使其在客户订购之前发货,一些保险公司试图通过访问基因数据或智能健康设备来更多地了解客户的健康状况。这说明,数字平台对客户的了解有时比客户对自己的了解更多。

目前,世界各国普遍基于知情同意方式保护数据,即数据收集者在数据提供者同意提供数据之前,有义务告知数据提供者关于数据收集和使用的信息。其基本逻辑是,一旦数据收集者告知数据的使用方式,用户就能够对数据交易做出合理决定。但是,不仅这种告知的可信度受到怀疑,公司还可能隐匿有关数据使用的信息,期望消费者以这种方式做出合理决定可能是天真的。在实践中,这个模型被证明是有问题的。可见,数字平台使用大量数据,依赖数据作为感知、分析、推理、决策,持续获得知识和经验并不断提升技能,尤其是在深度学习方面,但数据提供者很难知道正在处理哪些数据、如何处理这些数据以及如何生成有关个人的决策。

四、数据监管的思路与措施

(一)探索数据公地建设,促进数据开放共享

(二)加强数据管理和保护,增进数字市场的信任

(三)完善数字平台非歧视规则,促进数字市场公平竞争

(四)鼓励数据去中心化存储,遏制集中式存储造成的垄断

(五)探索监管沙盒,提高监管效率

参考文献

王世强.数字经济中的反垄断:企业行为与政府监管[J].经济学家,2021(4):91-101.

SCHNEIER,B.DATAANDGOLIATH:TheHiddenBattlestoCollectYourDataandControlYourWorld[M].NewYork:W.W.Norton&Company,2016.

SMITH,N.C.,GOLDSTEIND.G.&JOHNSON,E.J.Choicewithoutawareness:Ethicalandpolicyimplicationsofdefaults[J].JournalofPublicPolicy&Marketing,2013,(32)2:159-172.

WACHTER,S.&MITTELSTADTB.Arighttoreasonableinferences:Re-thinkingdataprotectionlawintheageofbigdataandAI[J].Colum.Bus.L.Rev.,2019,2:494.

GOLDFARB,A.,&TUCKERC.DigitalEconomics.JournalofEconomicLiterature[J],2019,57(1):3-43.

易芳,包嘉豪.数字平台的反垄断监管[J].财经问题研究,2022(2):33-41.

刘戒骄.我国公用事业运营和监管改革研究[J].中国工业经济,2006(9):46-52.

孙晋.数字平台的反垄断监管[J].中国社会科学,2021(5):101-127.

THE END
1.人工智能监督学习算法监督学习算法是机器学习中的一种方法,它通过使用标记的训练数据来学习一个模型,该模型能够对新的、未见过的数据进行预测或决策。在监督学习中,每个训练样本都包含输入变量(通常表示为特征)和期望的输出变量(也称为标签或目标)。算法的目标是学习输入和输出之间的映射关系,以便能够准确预测新样本的输出。 https://blog.csdn.net/xiaoyingxixi1989/article/details/141904659
2.开发监督学习最常见的五种算法,你知道几个?在机器学习中,无监督学习(Unsupervised learning)就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习(Supervised learning)就是有训练样本,带有属性标签,也可以理解成样本有输入有输出。 所有的回归算法和分类算法都属于监督学习。回归(Regression)和分类(Classification)的算法区别在于https://cloud.tencent.com/developer/article/1057751
3.?以下哪些机器学习算法是有监督学习算法?中央全面深化改革领导小组第三十五次会议指出,()是生态文明建设和环境保护的重要基础。要把()、()、()放在重要位置,采取最规范的科学方法、最严格的质控手段、最严厉的惩戒措施,深化环境监测改革,建立环境监测数据弄虚作假防范和惩治机制,确保环境监测数据全面、准确、客观、真实。https://www.shuashuati.com/ti/59389c6f18d6495fbffe7e741df8b4ab.html
4.监督学习有哪些常见算法?都是如何应用的监督学习有哪些常见算法?都是如何应用的 掌握一些最常用的监督学习算法能够帮助我们解决实际问题,本文将通过很多实例进行详细介绍。 ?什么是监督学习? 监督学习是机器学习的子集,监督学习会对机器学习模型的输入数据进行标记,并对其进行练习。因此,监督模型能最大限度地预测模型的输出结果。https://www.51cto.com/article/712484.html
5.BAT机器学习面试1000题系列(二)面试笔试整理3:深度学习机器学习面试问题准备(必会) 105.当机器学习性能遭遇瓶颈时,你会如何优化的? 可以从这4个方面进行尝试:基于数据、借助算法、用算法调参、借助模型融合。当然能谈多细多深入就看你的经验心得了。 这里有一份参考清单:机器学习系列(20)_机器学习性能改善备忘单 https://www.jianshu.com/p/4a7f7127eef1
6.2机器学习常见类型(算法种类)机器学习算法可以分为有监督学习文章主要介绍了机器学习的常见类型,包括监督学习、无监督学习、强化学习。监督学习是利用有“正确答案”的数据集训练模型进行预测,有回归和分类问题;无监督学习是从无标签或相同标签的数据中找结构,如聚类;强化学习是根据环境状态决定动作以获取最大收益。还介绍了相关算法的历史及典型应用等。 https://juejin.cn/post/7256975111563411513
7.前沿:机器学习在金融和能源经济领域的应用分类总结该文献(见文后reference)通过对2005年-2018年间发表的130多篇论文进行梳理分析表明,支持向量机(SVM)、人工神经网络(ANN)和遗传算法(GAs)是能源经济学论文中最常用的方法。同时,文章还对机器学习的方法、应用、优缺点以及未来可以拓展的领域进行了细致的总结。主要聚焦于以下几个问题:1、哪些方法在能源经济学中被频繁http://www.360doc.com/content/20/0526/21/45289182_914727499.shtml
8.机器学习(二)之无监督学习:数据变换聚类分析无监督学习算法只有输入数据,而没有已知的输出标签(label),我们需要从这些数据中学习到信息。常见的无监督学习包括数据集变换和聚类。 数据集的无监督变换(unsupervised transformation)是创建数据新的表示的算法,与数据的原始表示相比,新的表示可能更容易被人或其他机器学习算法所理解。无监督变换的一个常见应用是降维(https://www.flyai.com/article/516
9.机器学习中的有监督和无监督都包括些什么?机器学习算法通常分为有监督的(训练数据有标记答案)和无监督的(可能存在的任何标签均未显示在训练算法中)。有监督的机器学习问题又分为分类(预测非数字答案,例如错过抵押贷款的可能性)和回归(预测数字答案,例如下个月在曼哈顿商店出售的小部件的数量)。 https://www.cda.cn/view/27593.html
10.2021届计算机科学方向毕业设计(论文)阶段性汇报在本阶段,我们主要的工作进展有以下几点:1.为了提高实验效率,我们搭建了可用于多机器并行的训练框架,并基于此复现了传统的强化学习算法,为之后的实验提供对比。 2.基于之前的工作调研结果,提出了基于深度强化学习的多能体拟人化方法。 朱茂生 基于多模态机器学习的生存风险预测方法 研究内容及进度摘要:我在第一次https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3943
11.AI知识点汇总人工智能电脑百科分类:按学习方式可以分为监督学习(包括半监督学习)、无监督学习、强化学习、迁移学习。 2.2 监督学习 概念:机器学习的一种,通过学习许多有标签的样本,得到特征值和标记值之间的对应规律,然后对新的数据做出预测。 分类:根据输入数据x预测出输出数据y,如果y是整数的类别编号,则称为分类问题,算法包括:决策树、随机森https://www.isolves.com/it/ai/2022-02-21/50223.html
12.哪些算法用于解决深度学习问题6、常用的无监督学习算法主要有三种:聚类、离散点检测和降维,包括主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。简述深度学习的基本方法。深度学习算法以下三种:回归算法。回归算法是试图采用对误差的衡量来探索变量之间的关系的https://zhidao.baidu.com/question/443445629766969884.html
13.一周AI最火论文模型是否遗忘了我删除的数据?这个算法可以评估!本周关键词:新冠数据、无监督学习、3D人脸检测 本周最火学术研究 一种评估机器学习模型是否遗忘了数据的方法 考虑以下场景:有几个提供者,正计划为开发深度学习模型来解决分类任务提供数据。突然,提供者之一决定离开并要求删除数据,但更大的问题是,怎么确保该模型“忘记”这份数据。 https://news.hexun.com/2020-04-27/201164779.html