2024年最值得关注的10大深度学习算法大家好,我是Peter~今天给大家分享一下10大经典的深度学习算法。首先,对

首先,对比一下传统机器学习和深度学习的训练过程差异:

下图展示了传统机器学习算法与深度学习技术在数据量方面的性能比较。从图表中可以明显看出,随着数据量的增加,深度学习算法的性能也随之提升。

相比之下,传统机器学习算法的性能虽然会在一定程度上提升,但之后会趋于稳定(表现为一条水平线)。

随着数据量的持续增长,深度学习算法的性能优势将更加显著

从数据量角度出发,深度学习模型,尤其是深度神经网络,需要大量的数据进行训练。这种对大数据的需求使得深度学习能够在处理大规模数据集时表现出色。相比之下,传统机器学习算法在处理大数据集时可能会遇到计算瓶颈或性能下降的问题。

上述图像可以直观地表示神经网络(NeuralNetwork)的基本结构,主要由三个部分组成:

上述图像中仅展示了一个隐藏层,我们可以将其称为人工神经网络(ArtificialNeuralNetwork)或简称神经网络。另一方面,深度神经网络(DeepNeuralNetwork)则包含多个隐藏层,这也是它被称为“深度”的原因。

这些隐藏层之间相互连接,用于让我们的模型学习如何给出最终输出。通过增加隐藏层的数量,深度神经网络能够处理更复杂的数据和任务,捕捉数据中的高级抽象特征。

每个带有信息的节点以输入的形式传递,该节点将输入与随机的权重值相乘,并加上一个偏置项,然后进行计算。

之后,应用一个非线性函数或激活函数来确定哪个特定的节点将决定输出。这个过程是神经网络中信息处理的基本单元,其中权重和偏置是可学习的参数,通过训练过程进行调整,以优化网络的性能。

激活函数的选择对于网络的性能和学习能力至关重要,因为它引入了非线性,使得网络能够学习复杂的数据表示和模式。

MLP(多层感知机,Multi-LayerPerceptron)是最基本的深度学习算法之一,也是最早的深度学习技术之一。

深度学习的初学者建议你从MLP开始学起。MLP可以被视为一种前馈神经网络(FeedforwardNeuralNetwork)的形式。

前馈神经网络是一种人工神经网络,其中信息(或信号)只向一个方向流动,即从前一层的神经元流向后一层的神经元,不形成环路。

MLP通过堆叠多个这样的层(包括至少一个隐藏层)来构建,每个层都包含一定数量的神经元,层与层之间通过权重和偏置进行连接。通过训练过程,MLP能够学习输入数据中的复杂模式,并用于预测、分类或回归等任务。

一种基于径向基函数(RadialBasisFunction)的神经网络。来自维基百科的解释:

常用的径向基函数:

RBFN(径向基函数网络)使用试错法来确定网络的结构,这一过程主要分为两个步骤:

总之,RBFN通过无监督学习确定隐藏层中心,然后通过线性回归和误差最小化来确定权重,从而构建出能够处理复杂非线性关系的神经网络模型。

卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习的代表算法之一。

通过卷积、池化等操作来提取特征,将输入数据映射到一个高维特征空间中,再通过全连接层对特征进行分类或回归。

其核心思想是利用局部连接和权值共享来减少模型参数,提高模型泛化能力。

卷积神经网络通常由以下几个部分组成:

循环神经网络(RecurrentNeuralNetwork,RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursiveneuralnetwork)。

RNN的工作过程可以分为以下几个步骤:

RNN的工作过程可以用以下公式来描述:

LSTM,全称LongShort-TermMemory,即长短期记忆网络,是一种特殊的循环神经网络(RNN)结构。

LSTM通过引入具有长期记忆性的门控单元,解决了传统RNN在处理长序列数据时容易出现的长期依赖问题。

受限玻尔兹曼机是一种双层神经网络,具有特定的拓扑结构,即两层之间的神经元完全连接,但同一层的神经元之间互不相连。RBM是一种可通过输入数据集学习概率分布的随机生成神经网络。

RBM由两个主要部分组成:

可见层对应于输入数据,而隐层则用于捕捉数据中的隐藏特征。两层之间的神经元通过权重连接,但同一层内的神经元之间无连接。

在RBM中,对于单个输入x,如果输入层有两个节点而隐藏层有四个节点,那么总共会有8个权重(每个输入节点与每个隐藏节点之间都有一个权重)。

这些权重决定了输入信号如何传递到隐藏层。除了权重之外,每个隐藏节点还会接收一个偏置值。

SOMs作用:当数据集特征过多,难以直接用常规方法可视化时,自组织映射(SOMs)通过降低数据维度,帮助我们更好地理解和分析数据特征之间的分布和关系。

GenerativeAdversarialNetworks(GANs,生成对抗网络)是由IanGoodfellow等人在2014年提出的一种深度学习模型。

其核心理念是通过两个神经网络——生成器(Generator)和判别器(Discriminator)——的对抗过程,来生成与真实数据分布相似的新数据。

自编码器是一种神经网络,其输入和输出是一致的,目标是使用稀疏的高阶特征重新组合来重构自己。

在自动编码器中,数据首先被压缩成一个潜在空间表征(或称为编码),然后通过这个表征来重构原始数据。

自编码器和PCA(降维算法)的作用是比较类似的。它们被用于将高维数据转换为低维数据。如果我们需要原始数据,我们可以将其重新生成回来。

深度信念网络是一种基于无监督学习的生成模型,具有多层的堆叠结构,由多层受限玻尔兹曼机(RestrictedBoltzmannMachines,RBM)堆叠而成。

THE END
1.深度学习常见算法的介绍和比较深度学习算法所以,从本质上来看,深度结构带来的非凸优化仍然不能解决(包括现在的各类深度学习算法和其他非凸优化问题都是如此),这限制着深度结构的发展。 2.2 (Gradient Vanish)梯度消失问题 这个问题实际上是由激活函数不当引起的,多层使用Sigmoid系函数,会使得误差从输出层开始呈指数衰减。在数学上,激活函数的作用就是将输入数据https://blog.csdn.net/abc200941410128/article/details/79269386
2.?大牛的《深度学习》笔记,DeepLearning速成教程雷峰网雷锋网按:本文由Zouxy责编,全面介绍了深度学习的发展历史及其在各个领域的应用,并解释了深度学习的基本思想,深度与浅度学习的区别和深度学习与神经网络之间的关系。 深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支。从快速发展到实际应用,短短几年时间里,深度学习颠覆了https://www.leiphone.com/news/201608/7lwVZCXnScbQb6cJ.html
3.深度学习机器之心深度学习框架,尤其是基于人工神经网络的框架可以追溯到1980年福岛邦彦提出的新认知机,而人工神经网络的历史则更为久远,甚至可以追溯到公元前亚里士多德为了解释人类大脑的运行规律而提出的联想主义心理学。1989年,扬·勒丘恩(Yann LeCun)等人开始将1974年提出的标准反向传播算法应用于深度神经网络,这一网络被用于手写邮https://www.jiqizhixin.com/graph/technologies/01946acc-d031-4c0e-909c-f062643b7273
4.9种深度学习算法简介腾讯云开发者社区9种深度学习算法简介 导读:从算法处理的流程来划分,基于深度学习的目标检测算法可分为两阶段(Two-Stage)算法和一阶段(One-Stage)算法,两阶段算法需要先进行候选框的筛选,然后判断候选框是否框中了待检测目标,并对目标的位置进行修正;一阶段算法没有筛选候选框的过程,而是直接回归目标框的位置坐标和目标的分类概率。https://cloud.tencent.com/developer/article/1937602
5.深度学习算法简介深度学习算法是什么深度学习算法有哪些作为一种现代化、前沿化的技术,深度学习已经在很多领域得到了广泛的应用,其能够不断地从数据中提取最基本的特征,从而对大量的信息进行机器学习。深度学习算法作为其中的重要组成部分,不仅可以为诸如人工智能、图像识别以及自然语言处理等领域提供支持,同时也受到了越来越多的关注和研究。在本文中,我们将着重介绍深度学习https://m.elecfans.com/article/2216210.html
6.深度学习高手笔记卷1:基础算法本书通过扎实、详细的内容和清晰的结构,从算法理论、算法源码、实验结果等方面对深度学习算法进行分析和介绍。本书共三篇,第一篇主要介绍深度学习在计算机视觉方向的一些卷积神经网络,从基础骨干网络、轻量级 CNN、模型架构搜索 3 个方向展开,介绍计算机视觉方向的里程碑算法;第二篇主要介绍深度学习在自然语言处理方向的https://www.epubit.com/bookDetails?id=UB7d8623610d375
7.人民日报:用好算法,迈向智能社会“接受数据”“总结规律”“形成判断”这样的加工过程不可能一次完成,深度学习通过算例数据的反复输入和输出层的及时反馈,按照预测误差极小化原则,不断调整神经网络的联结参数,以最终实现对算例数据所含规律和内蕴结构的总结。 深度学习算法最为大众所知的案例,就是围棋“人机大战”。深度学习算法战胜围棋高手的前提,是https://kjt.shaanxi.gov.cn/kjzx/mtjj/276381.html
8.深度学习残差残差神经网络算法mob64ca141a2a87的技术博客深度残差网络无疑是近年来最成功的深度学习算法之一,在谷歌学术上的引用已经突破四万次。相较于普通的卷积神经网络,深度残差网络采用跨层恒等路径的方式,缓解了深层网络的训练难度。深度残差网络的主干部分是由很多残差模块堆叠而成的,其中一种常见的残差模块如下图所示。 https://blog.51cto.com/u_16213724/8718018
9.深度学习中的各种优化算法优化算法的目的是为了优化损失函数,损失函数衡量的是模型与数据的偏离程度,主要思想是计算损失函数关于参数的导数(多个参数时计算偏导数),然后沿导数的负方向迭代更新参数,一步步最小化损失函数。这类方法就叫做梯度下降法。 一阶优化算法 一阶优化算法只计算一阶偏导,写成矩阵就叫 Jacobian 矩阵。 https://www.jianshu.com/p/71f39c2ea512
10.17个机器学习的常用算法深度学习算法是对人工神经网络的发展。在近期赢得了很多关注, 特别是百度也开始发力深度学习后, 更是在国内引起了很多关注。 在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼https://aidc.shisu.edu.cn/78/aa/c13626a161962/page.htm
11.算法捉虫:深度学习和计算机视觉改变昆虫学澎湃号·湃客不过,近十年来,深度学习等技术的发展为昆虫学这一古老的学科带来了新的机遇。基于深度学习算法的图像处理技术和计算机视觉技术正在替代传统的人工观测方法。 在农业中,昆虫通常被视为害虫,因此已有的昆虫检测技术往往是通过检测昆虫的行为,开发更加高效的杀虫剂从而防治虫害。不过,科研人员可以基于同样的技术原理改变其用途https://www.thepaper.cn/newsDetail_forward_11862390
12.深度学习(豆瓣)最重要的进展是,现在我们有了这些算法得意成功训练所需的资源。 监督深度学习算法在每类给定约5000个标注样本情况下一般讲达到可以接受的性能,当至少有1000万个标注样本的数据集用于训练时,它将达到或超过人类表现。 几十年来,我们的机器学习模型中每个神经元的连接数量已经与哺乳动物的大脑在同一数量级上。 神经图灵https://book.douban.com/subject/27087503/