模具零件型腔表面凹陷如图1所示,凹陷缺陷表现为型腔内壁上产生凹坑或剥落,这种现象产生的原因有2种:
①模具零件材料的疏松与气孔;②模具材料存在非金属夹杂物与粗大的液析碳化物。若模具零件型腔表层存在气孔与疏松,当受到高温金属液体的反复冲蚀时,孔隙逐渐扩大,最终形成较大的孔穴;当型腔表层存在夹杂物和粗大液析碳化物时,在热循环中将产生应力,使夹杂物和粗大液析碳化物变形不协调,在界面上可能引起裂纹,导致夹杂物或粗大液析碳化物与金属基体脱开而形成剥落凹坑,并在熔融金属液的侵蚀作用下逐渐扩大。
1.2型芯塑性变形
型芯塑性变形是常见的压铸模缺陷。在压铸过程中,型芯的主要缺陷形式为折断与弯曲变形。型芯的作用是使铸件在开模方向或非开模方向形成孔或凹位,故会在工作过程中产生一定的压缩应力。如型芯的韧性较好,则可以抵抗熔融金属液对型芯的冲击,但细长的型芯容易被折断。型芯可看作一种悬臂梁,在工作过程中受到金属液冲击时的弯矩,可能会产生一定程度的弯曲。图2(a)所示为折断的型芯,图2(b)所示为弯曲的型芯。
1.3磨损缺陷
1.4断裂缺陷
断裂缺陷分为整体脆性断裂与热疲劳开裂等,当出现机械载荷过载或热过载时,有可能导致模具零件整体脆性断裂。热疲劳开裂一般是由微小疲劳裂纹导致,裂纹附近容易出现应力集中现象,如果不及时发现,裂纹会越来越大,直至断裂。图3所示为H13钢压铸模开裂。
1.5热疲劳裂纹
热疲劳裂纹是压铸模最常见的缺陷形式,占缺陷类别比例较大。压铸过程中,压铸模在300-800℃的热循环及脱模剂导致的拉应力与压应力交变循环的环境下,反复经受急冷、急热所造成的热应力,导致在型腔表面或内部热应力集中处逐渐产生微裂纹,其形貌多数呈现网状,也有呈放射状,称龟裂。热应力使热疲劳裂纹继续扩展成宏观裂纹,导致压铸模失效。图4(a)所示为热疲劳龟裂,图4(b)所示为由热疲劳引起的整体开裂。
1.6粘模缺陷
1.7溶蚀缺陷
溶蚀缺陷一般出现在采用活泼合金压铸的模具上,如Zn、Al、Mg等。溶蚀缺陷既有化学作用,也有物理作用,介于腐蚀与冲蚀之间。溶蚀缺陷仅出现在受到熔融金属液直接冲击的部位,即模具的型芯、型腔表面或硬度偏软处,压铸模溶蚀缺陷如图6所示。
2、机器视觉在模具零件缺陷检测中的应用
机器视觉检测技术属于在线无损检测方法,在缺陷检测中表现较好,如在以模具零件为对象的检测中,多用于模具保护、模具尺寸测量与模具定位等,可对模具零件中的异物、制件缺陷、制件脱模不良以及嵌件错位等问题进行检测,而对于模具零件型腔表面缺陷的检测研究较少。
以下介绍3种基于机器视觉技术的模具检测系统。(1)精密模具零件破损检测系统。传统的精密模具零件检测方式有人工检测及高斯曲线拟合检测等技术。人工检测劳动强度大、成本高、检测准确率低,有时检测使用的工具可能损伤模具零件表面。针对这个问题,谢俐等设计了一种精密模具零件缺陷检测系统,该系统主要包括模具零件图像采集、模具零件图像处理、模具零件检测结果输出以及显示等操作过程,具体组成结构如图7所示。
(1)采用FCN算法对图像的分割处理。FCN算法即全卷积神经网络算法,是一种具有像素级别分类能力的网络,常用语义分割。该网络与卷积神经网络的最大区别是不具备全连接层,而是将CNN中的全连接层都转换为卷积层。其中,卷积层、池化层、反卷积层以及跳跃结构为FCN核心功能模块。
全卷积神经网络架构如图9所示。在图9中,1号图例代表卷积层,2号图例代表池化层,3号图例代表反卷积层;FCN中的跳跃结构表示为带箭头的线段所引出的过程;4号图例代表剪裁层,用途是统一尺寸;5号图例代表逐元素相加,目的是融合结果。
FCN更加高效,避免了使用元素块所带来的存储与重复计算问题,可节约系统资源。同时,FCN在接受输入图片的尺寸上更加灵活,但FCN对于分割的结构还不够精细,忽略了空间规整步骤,缺乏空间一致性。在工件的缺陷检测中,由于工件表面的缺陷特征与其背景难以分割,分割后有可能在分割结果上存在大量的噪声,影响检测结果。由于CN的像素级分类特性,采用FCN可以解决该问题,工件表面缺陷检测是FCN较为普遍的应用场景之一。
(2)采用Yolo算法实现目标检测。Yolo算法是基于回归的单阶段目标检测算法,属于卷积神经网络,最初版本的Yolo算法由24层卷积层、2层全连接层以及4层最大池化层组成,Yolo架构如图10所示。
Yolo算法能在应用过程中,可以不通过生成候选区域的方式对物体的类别概率及位置坐标等信息进行预测,因为这个特点相较于两阶段检测算法,Yolo算法检测速度快,但其位置检测精度低于两阶段检测算法,如Faster-RCNN等,Yolo算法还能较好地识别物体的背景。由于Yolo算法具有以上这些特点,比较适合用于工业检测。
(3)采用CNN算法对缺陷进行分类。卷积神经网络是以人类神经元工作模式为理念所设计的一种网络结构,该网络共有5层,按顺序排列为输入层、卷积层、池化层、全连接层和输出层。其中,输入输出层用来接收与输出数据;卷积层、池化层以及全连接层为主要的工作层,对数据进行处理而获得想要的结果。卷积神经网络的架构如图11所示。
4、结束语
压铸模在生产过程中容易出现各种缺陷,如热疲劳龟裂、腐蚀以及断裂等缺陷,对压铸模的常见缺陷进行了总结,介绍了机器视觉技术在模具行业应用的常用场景,并简要介绍了缺陷检测中的常用算法。
压铸模的生命周期比其他模具短,故对于压铸模的缺陷检测较为频繁。目前,机器视觉技术在压铸模缺陷检测方面的应用较少,对其应用在压铸模的缺陷检测展开研究,较好地契合了智能制造的趋势,具有一定的创新意义。