机器学习中入门级必学的算法有哪些?人工智能

KNearestNeighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法,总体来说KNN算法是相对比较容易理解的算法。

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

两个样本的距离可以通过如下公式计算,又叫欧式距离,关于距离公式会在后面进行讨论

应用场景为:房价预测、销售额度预测、贷款额度预测

什么是线性回归?

线性回归(Linearregression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归。

线性回归用矩阵表示举例:

那么怎么理解呢?我们来看几个例子:

期末成绩:0.7×考试成绩+0.3×平时成绩

房子价格=0.02×中心区域的距离+0.04×城市一氧化氮浓度+(-0.12×自住房平均房价)+0.254×城镇犯罪率

上面两个例子,我们看到特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型。

逻辑回归(LogisticRegression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛。

这里就可以发现一个特点了,就是两个类别之间都属于判断,逻辑回归就是解决二分类问题的利器。

要想掌握逻辑回归,必须掌握两点:

逻辑回归中,其输入值是什么?

如何判断逻辑回归的输出?

输入:

激活函数:sigmoid函数

判断标准

回归的结果输入到sigmoid函数当中,输出结果:[0,1]区间中的一个概率值,默认为0.5为阈值。

逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)

输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.55,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。

关于逻辑回归的阈值是可以进行改变的,比如上面举例中,如果你把阈值设置为0.6,那么输出的结果0.55,就属于B类。

决策树:是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树。

怎么理解这句话?通过一个对话例子

上面案例是女生通过定性的主观意识,把年龄放到最上面,那么如果需要对这一过程进行量化,该如何处理呢?

此时需要用到信息论中的知识:信息熵,信息增益。

集成学习通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。

基于位置信息的商业推送,新闻聚类,筛选排序。

图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段。

一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。

在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。

THE END
1.算法学习攻略总结:入门至进阶,通关之路指南算法学习路线刚刚接触算法,在学习了基本的数据结构与算法后,很多人准备开始刷题,却总想着找一个最有效、最好的刷题平台。一会儿在 LeetCode 题解区逛逛,一会儿在牛客网看看面经,结果整个人都烦躁不安,焦虑迷茫。题没刷几道,羡慕嫉妒恨却增加了几分:别人的代码怎么这么简洁?别人的 Offer 怎么这么亮眼? https://blog.csdn.net/qq_26664043/article/details/140073279
2.2021年计算机数据结构与算法[1]知识点第一章:数据结构与算法 1.1 算法 算法:是指解题方案的准确而完整的描述。 算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括: https://xue.baidu.com/okam/pages/strategy-tp/index?strategyId=137041646971828&source=natural
3.机器学习十大经典算法入门[通俗易懂]腾讯云开发者社区机器学习十大经典算法入门[通俗易懂] 大家好,又见面了,我是你们的朋友全栈君。 一,SVM(Support Vector Machine)支持向量机a. SVM算法是介于简单算法和神经网络之间的最好的算法。 b. 只通过几个支持向量就确定了超平面,说明它不在乎细枝末节,所以不容易过拟合,但不能确保一定不会过拟合。可以处理复杂的非线性https://cloud.tencent.com/developer/article/2098380
4.初学机器学习?推荐从这十大算法入手这篇博文中的十大机器学习算法是专门写给初学者的。这些算法大多数都是我在孟买大学攻读计算机工程学士学位的时候,在“数据存储和挖掘“课程中学到的。“数据存储和挖掘“课程是一个非常棒的机器学习算法领域的入门课程。由于最后两个算法(集成方法)广泛运用于 Kaggle 比赛中,我专门把它们也写到了文章中。希望你喜欢这https://36kr.com/p/1721961660417
5.TensorFlow机器学习常用算法解析和入门集成学习就是将很多分类器集成在一起,每个分类器有不同的权重,将这些分类器的分类结果合并在一起,作为最终的分类结果。最初集成方法为贝叶斯决策。 集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习https://www.w3cschool.cn/tensorflow/tensorflow-s8uq24ti.html
6.趣学算法(第2版)本书是用轻松有趣的方法学习算法的入门指南。按照算法策略分为8章。第1章以算法之美、趣味故事引入算法,讲解算法复杂度的计算方法,以及爆炸性增量问题。2~7章讲解经典算法,包括贪心算法、分治算法、动态规划算法、回溯法、分支限界法、网络流算法。第8章讲解实际应用中的算法和高频面试算法,包括启发式搜索、敏感词https://www.epubit.com/bookDetails?id=UB7d85fa69dcbd8
7.程序员还不知道简历怎么写?教你如何写简历!简历写得好,offer不会如果你想进入大厂的话,我推荐你在学习完 Java基础之后,就开始每天抽出一点时间来学习算法和数据结构。为了提高自己的编程能力,你也可以坚持刷 Leetcode。就目前国内外的大厂面试来说,刷Leetcode 可以说已经成了不得不走的一条路。 对于想要入门算法和数据结构的朋友,建议看这两本书 《算法图解》 和 《大话数据结https://www.jianshu.com/p/1f6eb45c47db
8.书单豆瓣高分&全网热评的算法神作算法入门 对于初学者来说,学习算法的旅途是略显无聊与苦涩的,他们亟需有趣、实用的算法读物。 漫画算法系列图书和《图解算法小册》通过漫画和图解的方式将算法的本质呈现在读者面前,好玩又有趣,有效降低了学习算法的门槛,可以顺利引领我们进入算法殿堂,非常适合想学算法却因其枯燥复杂而望之生畏的朋友们一看。 http://www.broadview.com.cn/article/420385
9.清华大学出版社图书详情以Python为基础,使用sklearn平台,封装丰富的机器学习算法;代码详解便于更快地掌握机器学习的思想,加速入门过程;突出实用性,针对每个机器学习算法都有相关案例。作者:周元哲 丛书名:计算机系列教材 定价:49.90元 印次:1-4 ISBN:9787302599982 出版日期:2022.02.01 印刷日期:2023.06.29http://www.tup.tsinghua.edu.cn/bookscenter/book_09067201.html
10.统计学习方法(豆瓣)—— 引自章节:第一篇 监督学习 算法2.2 (感知机学习算法的对偶形式) (3) 如果 y_i(\sum_{j=1}^N \alpha_j y_j x_j \dot x_i+b) \le 0, \alpha_i \leftarrow \alpha_i+\eta b \leftarrow b + \eta y_i (查看原文) https://book.douban.com/subject/10590856/
11.AI算法工程师入门学习之路51CTO博客AI算法工程师入门学习之路 一、乱弹 当前社会对人工智能的追捧与鼓吹,早已进入白热化,相信大家已不在陌生,在此我不在赘述,我只讲干货,只讲方法。 说明:该方法将从最基本的学习方法开始,描述业界对算法工程师提出的技能要求,希望对想要入行算法的同学有帮助。https://blog.51cto.com/u_7932852/3044886
12.什么是机器学习?MicrosoftAzure机器学习在不同行业中的运用 各行各业的企业都在以多种方式使用机器学习。下面是机器学习在主要行业的一些运用示例: 银行和金融 风险管理和欺诈预防是机器学习为金融业提供巨大价值的关键领域。 医疗保健 机器学习可帮助改善病人护理,例如诊断工具、患者监测和预测疾病暴发。 https://azure.microsoft.com/zh-cn/resources/cloud-computing-dictionary/what-is-machine-learning-platform