什么是深度学习?深度学习的工作原理

深度学习是一种人工智能(AI)方法,用于教计算机以受人脑启发的方式处理数据。深度学习模型可以识别图片、文本、声音和其他数据中的复杂模式,从而生成准确的见解和预测。您可以使用深度学习方法自动执行通常需要人工智能完成的任务,例如描述图像或将声音文件转录为文本。

为什么深度学习很重要?

人工智能(AI)试图训练计算机像人类一样思考和学习。深度学习技术推动了日常产品中使用的许多AI应用程序的发展,例如:

数字助理

声控电视遥控器

欺诈检测

自动面部识别

它也是自动驾驶汽车、虚拟现实等新兴技术的重要组成部分。

深度学习模型是一些计算机文件,数据科学家训练这些文件,以使用算法或一组预定义步骤来执行任务。企业使用深度学习模型在各种应用程序中分析数据并做出预测。

深度学习的作用

深度学习在汽车、航空航天、制造、电子、医学研究和其他领域有很多使用场景。以下是深度学习的一些示例:

自动驾驶汽车使用深度学习模型自动检测路标和行人。

国防系统使用深度学习在卫星图像中自动标记感兴趣的区域。

医学图像分析使用深度学习自动检测癌细胞以进行医学诊断。

工厂使用深度学习应用程序自动检测人员或物体何时位于机器的不安全距离内。

您可以将这些不同的深度学习使用场景分为四大类:计算机视觉、语音识别、自然语言处理(NLP)和推荐引擎。

计算机视觉

计算机视觉是指计算机从图像和视频中提取信息及见解的能力。计算机可以使用深度学习技术来理解图像,就像人类一样。计算机视觉具有多种应用,如下所示:

内容审核,用于从图像和视频归档中自动删除不安全或不适当的内容

面部识别,用于识别面部和多项属性,如睁开的眼睛、眼镜以及面部毛发

图像分类,用于识别品牌徽标、服装、安全装备和其他图像细节

语音识别

深度学习模型可以分析人类语音,尽管说话模式、音调、语气、语言和口音不尽相同。虚拟助手(如AmazonAlexa)和自动转录软件使用语音识别执行以下任务:

帮助呼叫中心座席并对呼叫进行自动分类。

将临床对话实时转换为文档。

为视频和会议记录添加准确的字幕以实现更广泛的内容覆盖范围。

自然语言处理

计算机使用深度学习算法从文本数据和文档中收集见解和意义。这种处理自然的、人工创建的文本的能力有几个使用场景,包括在以下功能中:

自动虚拟座席和聊天机器人

长格式文档(如电子邮件和表格)的业务情报分析

推荐引擎

应用程序可以使用深度学习方法来跟踪用户活动并开发个性化推荐。它们可以分析各种用户的行为,并帮助他们发现新产品或服务。例如,许多媒体和娱乐公司,例如Netflix、Fox和Peacock,都使用深度学习来提供个性化的视频推荐。

深度学习的工作原理

深度学习算法是仿照人脑建模的神经网络。例如,人脑包含数百万个相互关联的神经元,它们协同工作以学习和处理信息。同样,深度学习神经网络(或人工神经网络)是由在计算机内部协同工作的多层人工神经元组成的。

人工神经元是称为节点的软件模块,它使用数学计算来处理数据。人工神经网络是使用这些节点来解决复杂问题的深度学习算法。

深度学习网络有哪些组成部分?

深度神经网络的组成部分如下:

输入层

人工神经网络有几个向其输入数据的节点。这些节点构成了系统的输入层。

隐藏层

输入层处理数据并将其传递到神经网络中更远的层。这些隐藏层在不同层级处理信息,在接收新信息时调整其行为。深度学习网络有数百个隐藏层,可用于从多个不同角度分析问题。

例如,如果您得到了一张必须分类的未知动物的图像,则可以将其与您已经认识的动物进行比较。例如,您可以查看其眼睛和耳朵的形状、大小、腿的数量和毛皮花色。您可以尝试识别图样,如下所示:

动物有蹄,所以它可能是牛或鹿。

动物有猫眼,所以它可能是某种类型的野猫。

深度神经网络中的隐藏层以相同的方式工作。如果深度学习算法试图对动物图像进行分类,则其每个隐藏层都会处理动物的不同特征并尝试对其进行准确的分类。

输出层

输出层由输出数据的节点组成。输出“是”或“否”答案的深度学习模型在输出层中只有两个节点。那些输出更广泛答案的模型则有更多的节点。

机器学习背景下的深度学习是什么?

深度学习是机器学习的子集。深度学习算法的出现是为了提高传统的机器学习技术的效率。传统的机器学习方法需要大量的人力来训练软件。例如,在动物图像识别中,您需要执行以下操作:

手动标记数十万张动物图像。

让机器学习算法处理这些图像。

在一组未知图像上测试这些算法。

找出某些结果不准确的原因。

通过标注新图像来改进数据集,以提高结果准确性。

这个过程称为有监督学习。在监督学习中,只有当您拥有广泛且充分多样化的数据集时,结果准确性才会提高。例如,该算法可能可以准确识别黑猫,但不能准确识别白猫,因为训练数据集包含更多黑猫图像。在这种情况下,您需要标记更多的白猫图像并再次训练机器学习模型。

深度学习相对于机器学习有什么好处?

与传统的机器学习相比,深度学习网络具有以下优势:

高效处理非结构化数据

机器学习方法发现非结构化数据(如文本文档)难以处理,因为训练数据集可能有无限种变化。另一方面,深度学习模型可以理解非结构化数据并进行一般观察,而无需手动提取特征。例如,神经网络可以识别出这两个不同的输入句子具有相同的含义:

您能否告诉我如何付款?

我如何转账?

隐藏的关系和模式发现

深度学习应用程序可以更深入地分析大量数据,并揭示可能尚未对其进行过训练的新见解。例如,考虑一个经过训练以分析消费者购买的深度学习模型。该模型仅包含您已购买的商品的数据。但是,通过将您的购买模式与其他类似客户的购买模式进行比较,人工神经网络可以向您推荐您尚未购买的新物品。

无监督学习

易失性数据处理

易失性数据集具有各种不同的版本。银行的贷款还款额就是其中的一个例子。深度学习神经网络也可以对这些数据进行分类和排序,例如通过分析金融交易并标记其中一些交易以进行欺诈检测。

深度学习面临哪些挑战?

由于深度学习是一项相对较新的技术,因此其实际实施会带来某些挑战。

大量高质量的数据

在大量高质量数据上训练深度学习算法时,可以获得更好的效果。输入数据集中的异常值或错误会显著影响深度学习过程。例如,在我们的动物图像示例中,如果数据集中意外引入了非动物图像,深度学习模型可能会将飞机归类为海龟。

为避免此类错误,必须先清理和处理大量数据,然后再训练深度学习模型。输入数据预处理需要大量的数据存储容量。

处理能力强

云端深度学习有哪些好处?

在云基础架构上运行深度学习算法可以克服其中的许多挑战。您可以使用云中的深度学习更快地设计、开发和训练深度学习应用程序。

速度

可扩展性

使用通过云提供的广泛的按需资源,您可以访问几乎无限的硬件资源来处理任何规模的深度学习模型。您的神经网络可以利用多个处理器,在不同类型和数量的处理器之间无缝、高效地分配工作负载。

THE END
1.究竟什么是算法,怎么什么都要学算法?算法有什么用为什么都啃算法如何用简单的英语解决它? 首先要做的是阅读问题并确保您了解说明要求您做什么。 接下来,确定问题中给定的所有变量的可能值,并尝试为每个变量提出一个逻辑解决方案。 最后,试着写出一个算法,从文字而不是代码开始,写出每个程序员都知道的被称为“伪代码”的东西 https://blog.csdn.net/2403_88996764/article/details/143954757
2.学习编程为什么要学习算法?Worktile社区第三,学习算法可以拓宽编程领域的应用。算法是计算机科学的核心,它被广泛应用在各种领域,如图像处理、人工智能、数据分析等。学习算法可以帮助程序员理解各种应用领域中的原理和技术,从而使他们能够更好地应用编程技术解决这些领域的具体问题。对于那些希望在特定领域有所突破的程序员来说,学习算法是必不可少的。 https://worktile.com/kb/ask/2300337.html
3.学习算法的意义算法是计算机科学领域最重要的基石之一,但却受到了国内一些程序员的冷落。许多学生看到一些公司在招聘时要求的编程语言五花八门就产生了一种误解,认为学计算机就是学各种编程语言,认为学习最新的语言、技术、标准https://m.edu.iask.sina.com.cn/jy/ktioFWROvR.html
4.机器学习SDG算法里面momentum是什么有什么用在机器学习中,Momentum是一种常用于优化算法的技术,它在梯度下降(Gradient Descent)的基础上进行了改进,主要目的是加速算法的收敛速度,并且可以更好地处理噪声数据。 Momentum的原理如下: 在标准的梯度下降算法中,每一步更新都只考虑当前时刻的梯度信息。而Momentum算法会在当前梯度和之前梯度之间建立一个动量,这个动量会https://www.jianshu.com/p/4440f744f379
5.监督学习有哪些常见算法?都是如何应用的展示和告知图像的过程可以被认为是标记数据,机器学习模型训练过程中,会被告知哪些数据属于哪个类别。 监督学习有什么用?监督学习可用于回归和分类问题。分类模型允许算法确定给定数据属于哪个组别。示例可能包括 True/False、Dog/Cat 等。 由于回归模型能够根据历史数据预测将来的数值,因此它会被用于预测员工的工资或房地产https://www.51cto.com/article/712484.html
6.鸡兔同笼教案集合10篇(五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗? 【课堂作业】 完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。 【课堂小结】 通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字https://www.unjs.com/fanwenwang/jiaoan/20230425163257_6948734.html
7.关于《长方体和正方体的表面积》教学设计(精选11篇)二、探究学习 1、探索长方体表面积的计算方法 出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢? 4人小组合作完成这个长方体表面积的计算。 汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。https://mip.ruiwen.com/jiaoxuesheji/2707146.html
8.Contents/premium.mdatmaster·Newslab2020/Contents·GitHub2023/1/31 什么是“情绪劳动”? 为什么记者也有情绪劳动? 中国一线记者的情绪劳动如何? 记者如何避免过多的情绪消耗? 647 AI写作工具如何改变大学教育 2023/1/27 AI写作工具如何改变大学教育; 近五分之一学生用AI作弊的期末作业; 如何应对学生使用AI工具抄袭和作弊; https://github.com/Newslab2020/Contents/blob/master/premium.md
9.学习SEO优化最常见的100个SEO问答黑帽seo就是作弊的意思,黑帽seo手法不符合主流搜索引擎发行方针规定,黑帽SEO获利主要的特点就是短平快,为了短期内的利益而采用的作弊方法,同时随时因为搜索引擎算法的改变而面临惩罚(具体可查看马海祥博客《什么是黑帽SEO》的相关介绍)。 4、新人如何去学习seo优化? https://www.niaogebiji.com/article-32844-1.html
10.什么是数据结构?什么是算法?怎么学习数据结构与算法?本文将回顾数据结构与算法的基础知识,学习日常所接触场景中的一些算法和策略,以及这些算法的原理和他背后的思想,最后会动手写代码,用java里的数据结构来实现这些算法,如何去做? 02 基本概念回顾 2.1 什么是数据结构? 1)概述 数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据https://maimai.cn/article/detail?fid=1744039689&efid=u2sSJyH6RePBrCh7o1dCfA
11.科学网—[转载]强化学习在资源优化领域的应用共同构成了此次交互的一条轨迹。一条轨迹对应的全部奖励值之和被称为这条轨迹对应的回报值,用R(τ)表示, 。 2.2 强化学习算法基础 根据智能体在与环境交互过程中具体学习的内容,可以把无须对环境进行建模(即model-free)的强化学习算法分为两大类:直接学习动作执行策略的策略优化算法(如REINFORCE)和通过学习一个值https://blog.sciencenet.cn/blog-3472670-1312677.html
12.谢耘:人工智能——多余的概念,算法的本质实用资讯“机器学习”(Machine Learning)方法的本质:用“学习算法”去帮助最终确定完善解决问题的算法 记得有一个国际人工智能界的名人曾经说过一句话:“人工智能就是机器学习,机器学习就是人工智能。”所以,如果我们能够搞清楚“机器学习”的本质,也就理解了“人工智能”到底是什么了。那么我们就来看一下“机器学习”这个听上https://yuanzhuo.bnu.edu.cn/article/1024
13.人民日报:用好算法,迈向智能社会人民日报:用好算法,迈向智能社会 2022年8月16日《人民日报》第20版 习近平总书记在主持中共中央政治局第九次集体学习时强调:“人工智能是新一轮科技革命和产业变革的重要驱动力量,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。”人工智能具有多学科综合、高度复杂的特征,在推动https://kjt.shaanxi.gov.cn/kjzx/mtjj/276381.html
14.深度学习Adam那么棒,为什么还对SGD念念不忘?一文看懂深度学习请继续阅读优化算法的选择和tricks:3 优化算法的选择和使用策略 在上述情况下,我们用一个框架梳理了主要的优化算法,并指出了以Adam为代表的自适应学习率优化算法可能存在的问题。那么,我们在实践中应该如何选择呢? 以下是Adam+SGD的组合策略,以及一些有用的tricks。不同优化算法的核心差异:下降方向 https://www.tulingxueyuan.cn/tlzx/jsp/2226.html
15.第三代神经网络模型:面向AI应用的脉冲神经网络澎湃号·湃客Wolfgang Maass 在提出SNN时使用的是相对简单的整合发放模型,而带泄漏整合发放(leaky integrate-and-fire,LIF)模型[1]则是目前在面向AI的SNN研究中最为常用的脉冲神经元。一些面向SNN学习算法的工作将LIF神经元与循环神经元进行类比,这使得SNN能够更好地融入深度学习的框架之中。https://www.thepaper.cn/newsDetail_forward_27289221
16.2020年最值得收藏的60个AI开源工具语言&开发李冬梅SC-FEGAN 听起来像另一款 GAN 库,没错,这的确是基于 GAN 的人脸照片涂鸦编辑。SC-FEGAN 与 StyleGAN 的算法一样出色。 你可以用开发者训练好的深度神经网络来编辑所有类型的人脸照片。SC-FEGAN 非常适合使用直观的用户输入与草图和颜色生成高质量的合成图像。 https://www.infoq.cn/article/2uabiqaxicqifhqikeqw
17.AlphaZero炼成最强通用棋类AI,仅用8小时就能完爆人类棋类游戏12月5日,距离发布AlphaGo Zero论文后不到两个月,他们在arXiv上传最新论文《用通用强化学习算法自我对弈,掌握国际象棋和将棋》(Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm),用看似平淡的标题,平淡地抛出一个炸弹。 https://www.36kr.com/p/5106773.html
18.浅析机器学习算法的应用嘲!腾讯云开发者社区在学习算法的过程里,难免有疑问:k近邻、贝叶斯、决策树、svm、逻辑斯蒂回归和最大熵模型、隐马尔科夫、条件随机场、adaboost、em这些算法在一般工作中分别用到的几率多大?一般用途是什么?需要注意什么? 首先简要回答一下:以上这些算法,如果是指书本或者大学课堂里面教的,那么在目前国内机器学习应用最多的一些工业界场https://cloud.tencent.com/developer/article/1928789