大模型到底能有多“大”?规模参数

这一轮人工智能浪潮,就是在原来深度学习的基础上,把神经网络做大,当参数规模做到700亿以上时,出现了智能涌现的现象。

那我们沿着这条道路,进一步把神经网络规模做大,比如做到1万亿参数、10万亿参数、100万亿参数,会不会在某个节点实现第二次智能涌现,把现在大模型的能力再上一个台阶,甚至实现AGI,实现大模型神经网络的意识觉醒呢?接下来,我们就来深入讨论一下这个问题。

深度学习的历史可以追溯到上世纪50年代,但真正的爆发是在过去的十年里,特别是随着计算能力的提升和数据量的增加。从最初的几万个参数的简单神经网络,到现今拥有数十亿乃至数千亿参数的巨型模型,我们见证了深度学习技术的惊人演进。这些大模型,已经在语言理解、生成任务以及其他领域取得了突破性的成绩。

这一过程不仅推动了技术的进步,也逐渐揭示了一个令人着迷的现象:随着模型参数的增加,模型表现出了一些意料之外的智能行为,这被称为“智能涌现”。

智能涌现是一个让人既兴奋又困惑的现象,简单来说,智能涌现是指当我们把成数十亿、数百亿的参数组合在一起训练深度学习模型时,这些模型开始展现出一些我们从未直接教会它们的能力。这就像是给一个孩子大量的乐高积木,他最终不仅仅是搭建出我们展示给他的例子,还可能创造出全新的设计,这种创造力的表现超出了单纯积木的组合。

智能涌现的核心在于“组合的力量”,当神经网络的规模达到一定程度时,它们能够在数据中发现极其复杂的模式,这些模式对于人类来说可能是难以理解或难以直接编程实现的。

例如,一个被训练用来理解和生成语言的模型,可能突然能够解答专业级别的逻辑题,或者创作出符合特定文体的诗歌。这并不是因为这些能力被明确地编程进去了,而是模型通过学习大量的语言数据,自主学会了这些复杂的任务。

智能涌现背后的动力是数据和算法的复合作用,通过对大数据的学习,模型能够捕获人类语言、情感、逻辑等的细微规律,并在此基础上进行推广。而算法结构,尤其是深度学习中的层次和非线性处理,为这种复杂信息的处理提供了支持。这就像是构建了一个非常复杂的信息处理工厂,每一层都在对信息进行提炼和转换,最终产生了我们称之为智能涌现的现象。

智能涌现不仅仅是人工智能领域的一个有趣现象,它也为我们提供了一个研究窗口,让我们可以探索智能的本质和极限。这一现象进一步引导我们去思考模型性能与模型规模之间的关系。

近年来的研究显示,增加参数数量通常会提升模型在特定任务上的准确率和生成能力,尤其是在自然语言处理领域。

那么,如果我们继续沿着这条道路,将模型做到1万亿参数、10万亿参数、甚至100万亿参数,我们能否期待出现第二次、第三次智能涌现呢?如果这条路能够走得通,那AGI就指日可待了,这真的让人心潮澎湃。

我们不禁要问这样一个问题:大模型到底可以做多大?有哪些限制了大模型的规模?这个问题背后隐藏着多重复杂性和挑战,涉及规模的边际效益递减、算法效率、计算资源限制、数据限制、黑箱限制等多个层面。

规模增加的边际效益递减

随着模型规模的增大,我们通常会见证性能的提升——至少在某些任务上是这样。但是,这种提升并非无限。研究表明,随着模型规模的扩大,性能提升的速率逐渐减缓,意味着每增加一个参数带来的性能提升越来越小。

这导致了一个重要的问题:是否存在一个“最优”规模范围,在这个范围内模型既能保持高效的性能提升,又不会因规模过大而遭遇到边际效益递减的问题?目前尚无确切答案,因为这可能取决于具体的应用场景和目标任务。

模型的复杂性和算法效率挑战

计算资源限制,需要的计算资源呈指数级提升

这不仅限制了模型规模的进一步扩展,也使得只有少数拥有巨大计算资源的机构能够训练和维护这些大型模型。

数据限制,数据不够容易产生过拟合问题

随着模型规模的增加,对训练数据的需求也随之增加。大模型需要大量的、高质量的数据来避免过拟合,并确保模型能够学习到足够多样化的特征。然而,获取、清洗和标注足够量级和质量的数据是一个巨大的挑战。目前已有的公开数据集往往无法满足这些大型模型的需求,而且随着模型规模的进一步扩大,这一问题将更加严峻。

更大的模型就是更大的黑箱,AI失控风险更大

大模型的可解释性问题也不容忽视,随着模型规模的增加,其内部机制变得更加复杂,人类对其的理解和掌控能力相对减弱。这不仅使得模型的决策过程变得难以追踪和理解,也增加了模型可能被错误使用或滥用的风险。此外,大模型作为“黑箱”的特性可能导致AI失控的风险增大,这对于模型的安全性和可靠性提出了新的挑战。

综上所述,大模型的发展面临着多方面的限制和挑战。虽然技术的进步可能会在一定程度上克服这些问题,但需要大家的共同努力,包括开发新的算法和优化技术、寻找更有效的数据获取和处理方法、提高模型的可解释性和安全性,以及考虑社会影响。只有这样,我们才能继续推进大模型的发展,同时确保这一技术的负责任和可持续使用。

尽管参数规模的增加带来了一系列令人瞩目的进步,但研究和实践均表明,算法与结构的创新、多模态与跨领域学习的融合,以及元学习和自适应学习的应用,创新的数据获取、处理能力等,对于推动智能系统的发展至关重要。

算法与结构创新

近年来,Transformer架构在多个领域证明了其强大的性能,成为了大型模型设计的基石。然而,我们不应该止步于此,而是应该持续探索更加高效和先进的模型架构和算法创新。

例如,稀疏性技术旨在减少模型中非必要的参数数量,通过仅更新模型中的一部分权重来减少计算负担。这种技术可以显著提升模型的训练效率,同时保持或甚至提升性能。

神经网络剪枝是另一种优化技术,通过移除模型中的冗余或不重要的连接(即权重),从而减少模型的规模而不牺牲太多的性能。这不仅能减少模型的存储和计算需求,还有助于提高模型的泛化能力。

参数共享技术也是提高模型效率的一个重要方向,在这种方法中,模型的不同部分共享同一组参数,这样可以减少模型的总参数数量,同时允许模型在处理不同任务时复用已学习的知识。这种技术对于多任务学习尤其有用,可以在多个任务之间有效地迁移学习。

多模态与跨领域学习

随着人工智能应用的深入,单一模态的数据处理已无法满足复杂任务的需求。多模态学习通过整合来自文本、图像、音频等不同模态的数据,能够提供更丰富的信息,从而提升模型的理解和推理能力。

此外,跨领域学习,即将在一个领域学到的知识应用到另一个领域,也展示了巨大的潜力。这种方法能够加速模型的学习过程,提高其泛化能力,是实现快速适应新任务和环境的关键。

元学习和自适应学习

元学习,或称为学会学习,旨在让模型具备在完成一项任务后快速适应新任务的能力。通过元学习,模型可以在少量数据上进行有效学习,大幅减少对海量训练数据的依赖,自适应学习则强调模型根据新的数据或环境变化自我调整。

这两种学习方式对于实现人工通用智能具有重要意义,因为它们使得模型能够在不断变化的环境中持续进步,而不是仅仅在特定任务上表现出色。

数据限制的解决策略

面对训练大型模型所需的大量数据带来的挑战,生成对抗网络(GANs)等技术为数据增强和合成提供了新的途径。通过GANs生成的高质量数据可以用于模型训练,减少对真实数据的依赖。同时,少样本学习和迁移学习策略,通过从少量数据中学习和利用已有知识来解决数据稀缺问题,使模型能够在数据受限的情况下仍然保持良好的性能。

THE END
1.元学习MetaLearning什么是元学习 元学习(Meta-Learning),也称为“学习如何学习”,是一种机器学习方法,其目的是通过学习算法的经验和结构特性,提升算法在新任务上的学习效率。 换句话说,元学习试图学习一种更有效的学习方法,使得模型能够快速适应新的任务或环境。 传统的机器学习算法通常需要大量的数据来训练模型,并且当数据分布发生变化https://blog.csdn.net/qq_60735796/article/details/142025393
2.元学习案例(学习如何学习)元学习入门详解(MAML算法及Reptile算法复现)优秀教程 元学习(Meta-learning),也称为“学习如何学习”,是机器学习领域的一种方法,旨在让模型通过学习经验来更好地应对新的任务。传统机器学习通常专注于解决单一任务,而元学习则聚焦于使模型通过从多个任务中学习,来提高其在全新任务中的表现。 http://www.kler.cn/a/349427.html?action=onClick
3.元学习元学习 (Meta-Learning) 通常被理解为“学会学习 (Learning-to-Learn)”, 指的是在多个学习阶段改进学习算法的过程。 在基础学习过程中, 内部(或下层/基础)学习算法解决由数据集和目标定义的任务。 在元学习过程中,外部(或上层/元)算法更新内部学习算法,使其学习的模型改进外部目标。 因此,元学习的核心想法是学https://www.jianshu.com/p/b88053b4402d
4.深度学习应用篇指的是在多个学习阶段改进学习算法的过程。 在基础学习过程中, 内部(或下层/基础)学习算法解决由数据集和目标定义的任务。 在元学习过程中,外部(或上层/元)算法更新内部学习算法,使其学习的模型改进外部目标。 因此,元学习的核心想法是学习一个先验知识 (prior)。 https://cloud.tencent.com/developer/article/2296112
5.元学习:机器学习的未来,让AI从经验中学习并适应新挑战元学习,也称为“学习如何学习”,是机器学习领域中一个令人兴奋且极具潜力的研究方向。传统的机器学习算法通常需要大量的数据来训练模型,并且当数据分布发生变化或者遇到一个新任务时,模型往往需要重新训练才能保持良好的性能。而元学习则不同,它通过 https://mp.weixin.qq.com/s?__biz=MzIwNDY0MjYzOA==&mid=2247516515&idx=1&sn=34a8816d1a6cdfd54fc94ddff3bfe615&chksm=96141a1d4833254215aca22f3010b3716a2a765fe8f683269e94182a443f03ae3f95fee2efa0&scene=27
6.计算机视觉中的小样本学习综述wx5d23599e462fa的技术博客元学习算法——定义、度量学习、基于梯度的元学习 Few-Shot图像分类算法——与模型无关的元学习、匹配、原型和关系网络 Few-Shot目标检测– YOLOMAML 什么是小样本学习? Few-Shot Learning(以下简称FSL)是机器学习的一个子领域。在只有少数具有监督信息的训练样本情况下,训练模型实现对新数据进行分类。 https://blog.51cto.com/u_14439393/5748518
7.百面深度学习算法工程师带你去面试本书由Hulu的近30位算法研究员和算法工程师共同编写完成,专门针对深度学习领域,是《百面机器学习:算法工程师带你去面试》的延伸。全书内容大致分为两个部分,第一部分介绍经典的深度学习算法和模型,包括卷积神经网络、循环神经网络、图神经网络、生成模型、生成式对抗网络、强化学习、元学习、自动化机器学习等;第二https://www.epubit.com/bookDetails?id=UB71eb7f09e64b2
8.什么是元学习Metalearning?(为什么它很重要)强化学习:依赖海量的训练,并且需要精准的奖励。成本较高且比较复杂。 元学习:具备自学能力,能够充分利用过去的经验来指导未来的任务。被认为是实现通用人工智能的关键。 什么是元学习? 元学习的思想是学习「学习(训练)」过程。 元学习有好几种实现方法,不过本文谈到的两种「学习『学习』过程」的方法和上文介绍的方式https://easyai.tech/ai-definition/meta-learning/
9.《除数是整数的小数除法》说课稿(通用11篇)解决问题:《新编童话集》共4本,售价26.8元。平均每本售价多少钱? 环节六:完善认知。 引导学生从知识、方法多方面来谈自己的收获,并对自己整节课的表现作自我评价。 四、说板书设计。 例题作为本节课的重点板书在黑板中央,整数除法放在附板书位置,用来作为学习例题的辅助资源。整体上板书设计层次分明,重点突出,使学https://www.yjbys.com/shuokegao/xiaoxue/1186007.html
10.小学数学教案(精选15篇)小数乘整数表示什么呢? 二。探究算法 1、请大家想办法算出0。2×3的积。 (1)学生独立思考并计算。 (2)同桌交流算法。 (3)全班交流: A。连加法:0。2+0。2+0。2=0。6 b。联想、转化:0。2元=2角2角×3=6角=0。6元 c。画图法:你是怎样画的?为什么要画3个0。2? https://www.unjs.com/jiaoan/shuxue/20230626065815_7317540.html
11.当传统联邦学习面临异构性挑战,不妨尝试这些个性化联邦学习算法该方法通过引入一个精细化调整阶段,该精细化调整阶段使用模型不可知的元学习算法(model agnostic meta learning,MAML)。通过联邦学习训练得到的全局模型可以个性化地捕捉单个设备中的细粒度信息,从而提高每个物联网设备的性能。MAML 可以灵活地与任何模型表示相结合,以适应基于梯度的训练。此外,它只需少量的数据样本就https://www.thepaper.cn/newsDetail_forward_9306970
12.一周AI最火论文模型是否遗忘了我删除的数据?这个算法可以评估!为了实现机器人在复杂多变的世界中的自主运行,学习适应性策略至关重要。在本文中,谷歌AI研究人员与哥伦比亚大学合作提出了一种新的元学习方法,该方法可以使机器人快速适应动态变化。 与依赖于二阶梯度估计的元学习算法相比,研究人员引入了更耐噪声的Batch Hill-Climbing适应算子,并将其与基于进化策略的元学习相结合。https://news.hexun.com/2020-04-27/201164779.html
13.NatureMachineIntelligence刘琦教授团队开发基于元学习的AIPanPep算法框架(图2)包含了元学习模块和解耦蒸馏(Disentanglement distillation)模块。其中,针对已知数据的长尾效应,元学习模块采用了Model-Agnostic Meta Learning(MAML)计算框架。模型假设每一个肽段具有其特异性的TCR结合模式,因此每一个肽段下的TCR结合识别任务被当作MAML中的一个任务,且肽段表征的分布即为任务的分https://life.tongji.edu.cn/81/05/c12615a295173/page.htm
14.学会学习更多:元强化学习译站元学习算法:元学习算法通过所学知识来更新模型权重。该算法的主要目标是应用从先前任务中学到的知识优化模型,以在最短时间内使模型能够处理全新的任务。先前的研究一般是通过LSTM单元的梯度下降来更新权重。 MAML和Reptile是典型的元学习算法,通过该算法更新模型参数,使得模型在未知的新任务中具有良好的泛化性能。 04 https://god.yanxishe.com/TextTranslation/2950
15.字节跳动CVPR2023论文精选来啦(内含一批图像生成新研究)因此在这项工作中,为了提升模型对这种未见组合的表现,作者团队从元学习的角度提出了一个新颖的框架, 这个框架只改变模型的训练方式,因此可以无缝的和现有模型结合起来去提升他们的表现。 首先作者分析了这个任务中现有文字表达主要的三种组合方式,即单词与单词的组合,单词与词组的组合,词组与词组的组合,可见下图中的例子https://xie.infoq.cn/article/940b4ff308a91bf5cec9ab05b
16.融合元学习和PPO算法的四足机器人运动技能学习方法融合元学习和PPO算法的四足机器人运动技能学习方法 朱晓庆?,刘鑫源,阮晓钢,张思远,李春阳,李鹏 (北京工业大学信息学部,北京100020;计算智能与智能系统北京市重点实验室,北京100020)摘要:具备学习能力是高等动物智能的典型表现特征,为探明四足动物运动技能学习机理,本文对四足机器人步态学习任务进行研究,复现了四足动物的https://wenku.baidu.com/view/e368afcebb4ae45c3b3567ec102de2bd9705de71.html