开通VIP,畅享免费电子书等14项超值服
首页
好书
留言交流
下载APP
联系客服
2023.04.29湖北
图1.AI在传染病监测中的各种功能
AI在疾病监测中的应用
预警
图2.HealthMap使用自然语言处理方法分类传染病病例报告的范例
病原体分类
图3.应用AI测量抗生素敏感性的手机应用程序范例
源头识别
风险评估
图4.通过强化学习方法进行边境COVID-19监测范例
扩展应用
图5.AI和机器学习将个人行为转化为人群健康信息
多种(未列举全部)AI和机器学习算法(此处分成监督分类算法或人工神经网络)及人工方法可在假设的呼吸道病毒暴发中应用。个体事件汇总之后,可产生信号,提示人群可能发生传染病。检测到的信号用于确定可采取的监测措施。每种方法各有优缺点,相互结合之后,这些算法构成了检测和应对疾病暴发的系统。CCTV表示闭路电视。
监测工作的障碍和未来方向
数据的质和量
数据源的代表性
隐私
AI的极限
传染病监测工作的未来将运用新兴技术形式,包括不限于生物传感器、量子计算和增强智能。大型语言模型的最新进展(如GPT-4[基于转换器的生成式预训练模型])为传染病监测工作的未来展现出广阔前景,因为这些模型可以处理和分析大量非结构化文本,并且可能增强我们简化劳动密集型流程和发现隐藏趋势的能力。那些尚未发明的新技术也必将在未来有所作为。然而,在COVID-19疫情期间,我们的现有方法受到了考验,而它们的性能差异很大。AI驱动的下一代监测工具要取得成功,很大程度上将取决于我们是否有能力解决当前算法的缺点、判断哪些成就可以推广,以及将许多经验教训融入未来行动。
2.FreifeldCC,MandlKD,ReisBY,BrownsteinJS.HealthMap:globalinfectiousdiseasemonitoringthroughautomatedclassificationandvisualizationofInternetmediareports.JAmMedInformAssoc2008;15:150-157.
3.LimS,TuckerCS,KumaraS.Anunsupervisedmachinelearningmodelfordiscoveringlatentinfectiousdiseasesusingsocialmediadata.JBiomedInform2017;66:82-94.
4.AlHossainF,LoverAA,CoreyGA,ReichNG,RahmanT.FluSense:acontactlesssyndromicsurveillanceplatformforinfluenza-likeillnessinhospitalwaitingareas.ProcACMInteractMobWearableUbiquitousTechnol2020;4:1-28.
5.MollaloA,MaoL,RashidiP,GlassGE.AGIS-basedartificialneuralnetworkmodelforspatialdistributionoftuberculosisacrossthecontinentalUnitedStates.IntJEnvironResPublicHealth2019;16:157-157.
6.ReichNG,McGowanCJ,YamanaTK,etal.Accuracyofreal-timemulti-modelensembleforecastsforseasonalinfluenzaintheU.S.PLoSComputBiol2019;15(11):e1007486-e1007486.
7.LiuD,ClementeL,PoirierC,etal.Real-timeforecastingoftheCOVID-19outbreakinchineseprovinces:machinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels.JMedInternetRes2020;22(8):e20285-e20285.
8.DantasLF,PeresIT,BastosLSL,etal.App-basedsymptomtrackingtooptimizeSARS-CoV-2testingstrategyusingmachinelearning.PLoSOne2021;16(3):e0248920-e0248920.
9.PascucciM,RoyerG,AdamekJ,etal.AI-basedmobileapplicationtofightantibioticresistance.NatCommun2021;12:1173-1173.
10.LiangZ,PowellA,ErsoyI,etal.CNN-basedimageanalysisformalariadiagnosis.In:ProceedingsandAbstractsofthe2016IEEEInternationalConferenceonBioinformaticsandBiomedicine(BIBM),December15–18,2016.Shenzhen,China:InstituteofElectricalandElectronicsEngineers,2016.
11.BastaniH,DrakopoulosK,GuptaV,etal.EfficientandtargetedCOVID-19bordertestingviareinforcementlearning.Nature2021;599:108-113.
12.SundermannAJ,ChenJ,KumarP,etal.Wholegenomesequencingsurveillanceandmachinelearningoftheelectronichealthrecordforenhancedhealthcareoutbreakdetection.ClinInfectDis2021November17(Epubaheadofprint).
13.RandhawaGS,SoltysiakMPM,ElRozH,deSouzaCPE,HillKA,KariL.Machinelearningusingintrinsicgenomicsignaturesforrapidclassificationofnovelpathogens:COVID-19casestudy.PLoSOne2020;15(4):e0232391-e0232391.
14.ChoA.AIsystemsaimtosniffoutcoronavirusoutbreaks.Science2020;368:810-811.
15.AlaviA,BoguGK,WangM,etal.Real-timealertingsystemforCOVID-19andotherstresseventsusingwearabledata.NatMed2022;28:175-184.
16.BrownsteinJS,FreifeldCC,ReisBY,MandlKD.SurveillanceSansFrontières:internet-basedemerginginfectiousdiseaseintelligenceandtheHealthMapproject.PLoSMed2008;5(7):e151-e151.
17.BrownsteinJS,FreifeldCC,MadoffLC.Digitaldiseasedetection—harnessingtheWebforpublichealthsurveillance.NEnglJMed2009;360:2153-2155.
18.BrownsteinJS,FreifeldCC,MadoffLC.InfluenzaA(H1N1)virus,2009—onlinemonitoring.NEnglJMed2009;360:2156-2156.
19.HswenY,BrownsteinJS.Real-timedigitalsurveillanceofvaping-inducedpulmonarydisease.NEnglJMed2019;381:1778-1780.
20.BhatiaS,LassmannB,CohnE,etal.Usingdigitalsurveillancetoolsfornearreal-timemappingoftheriskofinfectiousdiseasespread.NPJDigitMed2021;4:73-73.
21.MaharajAS,ParkerJ,HopkinsJP,etal.TheeffectofseasonalrespiratoryvirustransmissiononsyndromicsurveillanceforCOVID-19inOntario,Canada.LancetInfectDis2021;21:593-594.
22.YuK-H,BeamAL,KohaneIS.Artificialintelligenceinhealthcare.NatBiomedEng2018;2:719-731.
24.KimH-E,KimHH,HanB-K,etal.Changesincancerdetectionandfalse-positiverecallinmammographyusingartificialintelligence:aretrospective,multireaderstudy.LancetDigitHealth2020;2(3):e138-e148.
25.SundermannAJ,MillerJK,MarshJW,etal.Automateddataminingoftheelectronichealthrecordforinvestigationofhealthcare-associatedoutbreaks.InfectControlHospEpidemiol2019;40:314-319.
26.GreenwoodB.Thecontributionofvaccinationtoglobalhealth:past,presentandfuture.PhilosTransRSocLondBBiolSci2014;369:20130433-20130433.
27.CuiX,ZhaoL,ZhouY,etal.Transmissiondynamicsandtheeffectsofnon-pharmaceuticalinterventionsintheCOVID-19outbreakresurgedinBeijing,China:adescriptiveandmodellingstudy.BMJOpen2021;11(9):e047227-e047227.
28.TianH,LiuY,LiY,etal.Aninvestigationoftransmissioncontrolmeasuresduringthefirst50daysoftheCOVID-19epidemicinChina.Science2020;368:638-642.
29.RaderB,WhiteLF,BurnsMR,etal.Mask-wearingandcontrolofSARS-CoV-2transmissionintheUSA:across-sectionalstudy.LancetDigitHealth2021;3(3):e148-e157.
30.WuJ,XieX,YangL,etal.MobilehealthtechnologycombatsCOVID-19inChina.JInfect2021;82:159-198.
31.GadaletaM,RadinJM,Baca-MotesK,etal.PassivedetectionofCOVID-19withwearablesensorsandexplainablemachinelearningalgorithms.NPJDigitMed2021;4:166-166.
32.GuoP,ZhangJ,WangL,etal.Monitoringseasonalinfluenzaepidemicsbyusinginternetsearchdatawithanensemblepenalizedregressionmodel.SciRep2017;7:46469-46469.
33.GomideJ,VelosoA,MeiraW,etal.Denguesurveillancebasedonacomputationalmodelofspatio-temporallocalityofTwitter.In:ProceedingsandAbstractsofthe3rdInternationalWebScienceConference,June15–17,2011.Koblenz,Germany:AssociationforComputingMachinery,2011.
34.LoeyM,ManogaranG,TahaMHN,KhalifaNEM.AhybriddeeptransferlearningmodelwithmachinelearningmethodsforfacemaskdetectionintheeraoftheCOVID-19pandemic.Measurement(Lond)2021;167:108288-108288.
36.ChanAT,BrownsteinJS.Puttingthepublicbackinpublichealth—surveyingsymptomsofCovid-19.NEnglJMed2020;383(7):e45-e45.
37.LazerD,KennedyR,KingG,VespignaniA.Bigdata.TheparableofGoogleflu:trapsinbigdataanalysis.Science2014;343:1203-1205.
38.AntonelliM,PenfoldRS,MerinoJ,etal.Riskfactorsanddiseaseprofileofpost-vaccinationSARS-CoV-2infectioninUKusersoftheCOVIDSymptomStudyapp:aprospective,community-based,nested,case-controlstudy.LancetInfectDis2022;22:43-55.
40.Developinginfectiousdiseasesurveillancesystems.NatCommun2020;11:4962-4962.
41.LabgoldK,HamidS,ShahS,etal.Estimatingtheunknown:greaterracialandethnicdisparitiesinCOVID-19burdenafteraccountingformissingraceandethnicitydata.Epidemiology2021;32:157-161.
42.VyasDA,EisensteinLG,JonesDS.Hiddeninplainsight—reconsideringtheuseofracecorrectioninclinicalalgorithms.NEnglJMed2020;383:874-882.
43.RobertsM,DriggsD,ThorpeM,etal.CommonpitfallsandrecommendationsforusingmachinelearningtodetectandprognosticateforCOVID-19usingchestradiographsandCTscans.NatMachIntell2021;3:199-217.
44.MaguoloG,NanniL.AcriticevaluationofmethodsforCOVID-19automaticdetectionfromX-rayimages.InfFusion2021;76:1-7.
46.RiversC,LewisB,YoungS.Detectingthedeterminantsofhealthinsocialmedia.OnlineJPublicHealthInform2013;5(1):e161-e161.
47.SadilekA,LiuL,NguyenD,etal.Privacy-firsthealthresearchwithfederatedlearning.NPJDigitMed2021;4:132-132.
50.RimmerA.Covid-19:medicalconferencesaroundtheworldarecancelledafterUScasesarelinkedtoMassachusettsmeeting.BMJ2020;368:m1054-m1054.