遥感技术与应用,2023,38(4):783-793doi:10.11873/j.issn.1004-0323.2023.4.0783
宽波段多光谱数据立方专栏
2.中国科学院长春光学精密机械与物理研究所,吉林长春130033
3.中国科学院大学,北京100049
2.ChangchunInstituteofOptics,FineMechanicsandPhysics,ChineseAcademyofSciences,Changchun130033,China
3.UniversityofChineseAcademyofSciences,Beijing100049,China
收稿日期:2022-08-25修回日期:2023-06-25
Received:2022-08-25Revised:2023-06-25
作者简介Aboutauthors
关键词:地球观测卫星;区域分解;卫星调度与规划;地面站;多目标进化算法;多星协同
Keywords:Earthobservationsatellite;Regionaldecomposition;Satelliteschedulingandplanning;Groundstation;Multi-objectiveevolutionaryalgorithm;Multi-satellitecoordination
本文引用格式
何奇恩,李峰,钟兴.多目标算法在卫星区域覆盖调度及数传规划上的应用综述.遥感技术与应用[J],2023,38(4):783-793doi:10.11873/j.issn.1004-0323.2023.4.0783
HEQi'en,LIFeng,ZHONGXing.AReviewoftheApplicationofMulti-objectiveAlgorithmsinSatelliteRegionalCoverageSchedulingandDataTransmissionPlanning.RemoteSensingTechnologyandApplication[J],2023,38(4):783-793doi:10.11873/j.issn.1004-0323.2023.4.0783
图1卫星数据获取流程图
Fig.1Flowchartofsatellitedataacquisition
图2点目标、区域目标及区域覆盖示意图
Fig.2Schematicdiagramofspottarget,areatargetandregionalcoverage
网格法是经典的区域分解方法之一,按网格属性又可细分为等经纬度法和等面积法。
图3等经纬度分解法
Fig.3Equallongitudeandlatitudedecompositionmethod
图4等面积分解法
Fig.4Equalareadecompositionmethod
图5条带分解法
Fig.5Stripdecompositionmethod
条带法不考虑所生成条带的长度以及如何最优化所覆盖网格,只通过调整侧摆角步长来控制生成条带的数量。因此与网格法相比,该方法可以明显降低候选条带的数量,减少冗余条带对后续调度模型求解速度的影响。另一方面,在得到区域覆盖计划之后通常需要对条带长度进行剪裁,以避免不必要的资源浪费。
图6多目标进化算法求解示意图
Fig.6Solutionsofmulti-objectiveevolutionaryalgorithm
表1变量及说明
Table1Variablesandexplanation
决策变量:
(1)是否在观测任务中选择某条带:
常见目标函数:
(1)最大化覆盖面积(收益):
(2)最小化所选条带个数:
(3)最小化条带重叠率:
(5)最大化数传时长:
(6)最大化数传任务完成率:
常见约束条件:
(1)每颗卫星每次过境只能选择一个条带用于观测:
(2)每颗卫星的内存限制:
(4)获得的图像分辨率满足所要求分辨率:
(5)侧摆角度在允许范围内:
(6)每个地面站每次只能与一颗卫星进行数传:
解决多星协同覆盖区域目标的一般方法包括两个步骤。第一步是将目标区域按照一定的规则分解成一系列元任务(meta-tasks),即区域分解过程。第二步是设计各种模型和算法(多为多目标进化算法)选择这些元任务的一个子集,并将它们分配给特定的卫星。换言之,该方法将卫星区域覆盖问题分为两个子问题,即目标区域的分解和调度模型的优化。
图7加入目标区域偏好信息的多目标进化算法求解示意图
Fig.7Solutionsofmulti-objectiveevolutionaryalgorithmwithtargetregionpreferenceinformation
(1)点目标和多边形区域目标的联合观测任务规划。实际的用户观测需求往往是点目标和区域目标的结合。现有的区域分解和调度、规划方法不能很好地解决两者同时观测的问题。今后应重点研究融合点目标和区域目标的多星多目标协同观测问题。
(3)将多目标算法与其他方法相融合。多目标算法种类繁多,特点各异。针对其自身局限性,可将其与局部搜索、机器学习等算法整合使用,使得多目标算法能够在更广泛的实际问题中得以应用。
UnionofConcernedScientists(UCS)SatelliteDatabase
VAZQUEZAJ,ERWINRS.Onthetractabilityofsatelliterangescheduling
NIUX,TANGH,WUL.Satelliteschedulingoflargearealtasksforrapidresponsetonaturaldisasterusingamulti-objectivegeneticalgorithm
GAROUANIAEL,MULLADJ,GAROUANISEL,etal.Analysisofurbangrowthandsprawlfromremotesensingdata:CaseofFez,Morocco
KHALIDN,ULLAHS,AHMADSS,etal.AremotelysensedtrackingofforestcoverandassociatedtemperaturechangeinMargallahills
RIVETTC,PONTECORVOC.Improvingsatellitesurveillancethroughoptimalassignmentofassets
RUANQiming,TANYuejin,LIYongtai,etal.Usingconstraintsatisfactiontocooperatesatellites'activitiesforthemissionofareatargetobservation
SHAOX,ZHANGZ,WANGJ,etal.NSGA-II-basedmulti-objectivemissionplanningmethodforsatelliteformationsystem
LIUHuajun,CAIBo,ZHUQing.Self-adaptiveplanningmethodofimagingreconnaissancesatellitesareacoverage
刘华俊,蔡波,朱庆.一种成像卫星区域覆盖的自适应规划方法
XUYudong,ZHOUJingbo,YINJiazhao,etal.Reviewofmissionplanningstrategiesandapplicationsofearthobservationsatellites
许宇栋,周敬博,尹嘉昭,等.对地观测卫星任务规划策略及应用研究综述
ZHUW,HUX,XIAW,etal.Athree-phasesolutionmethodfortheschedulingproblemofusingearthobservationsatellitestoobservepolygonrequests
YANGJiwei,FUWei,HANLi,etal.Regionaltargetplanningalgorithmofsatelliteimagingbasedonglobalgrid
杨纪伟,付伟,韩丽,等.基于全球网格的卫星成像区域目标规划算法
LIX.Two-archive2algorithmforlarge-scalepolygontargetsobservationschedulingproblem
XUY,LIUX,HER,etal.Multi-objectivesatelliteschedulingapproachforverylargearealobservation
SHENXiajiong,WUXiaoyang,WANGGengke,etal.Remotesensingsatellitecoveringmethodovergroundfacingtoanygeometricarea
沈夏炯,吴晓洋,王更科,等.面向任意几何区域的遥感卫星对地覆盖法
PENGPan,SONGZhiming,NITao.Applicationofimprovednet-pointmethodtosolvingareacoverageproblem
彭攀,宋志明,倪涛.改进的网格点法在区域覆盖问题中的应用
WANGRongfeng,HUMin.Algorithmforsatelliteregionalcoverageanalysisbasedonscanline
汪荣峰,胡敏.基于扫描线的卫星区域覆盖分析算法
LIUXD,CHENYW,LONGYJ.AMapX-basedpreprocessingapproachformulti-satellitecooperativeobservationtowardsareatarget
HEY,XUM,YANGZ,etal.Schedulingimagingmissionforareatargetbasedonsatelliteconstellation
PANYao,CHIZhongming,RAOQilong,etal.DynamicsegmentingmethodofpolygontargetbasedonFOVforremotesensingsatelliteimaging
潘耀,池忠明,饶启龙,等.基于视场角的遥感卫星成像多边形区域目标动态分解方法
ZHANGG,LIX,HUG,etal.Missionplanningissuesofimagingsatellites:Summary,discussion,andprospects
BAIBaocun,RUANQiming,CHENYingwu.Dynamicsegmentingmethodofpolygonforremotesensingsaltellitesobserving
白保存,阮启明,陈英武.多星协同观测条件下区域目标的动态划分方法
HER,BAIB,CHENY,etal.Multi-satellitemissionplanningforenvironmentalanddisastermonitoringsatellitesystem
YUJing,XIJinjun,YULongjiang,etal.Studyofone-orbitmulti-stripssplicingimagingforagilesatellite
余婧,喜进军,于龙江,等.敏捷卫星同轨多条带拼幅成像模式研究
YAOJingyu.Researchonmultiplesatelliteschedulingmethodorientedtoregionaltargetobservation
姚靖宇.面向区域目标观测的多星调度方法研究
BRANDIMARTEP.Schedulingsatellitelaunchmissions:anMILPapproach
RAMANV,GILLNS.Reviewofdifferentheuristicalgorithmsforsolvingtravellingsalesmanproblem
BEHESHTIZ,SHAMSUDDINSMH.Areviewofpopulation-basedmeta-heuristicalgorithms
BIANCHESSIN,CORDEAUJF,DESROSIERSJ,etal.Aheuristicforthemulti-satellite,multi-orbitandmulti-usermanagementofearthobservationsatellites
MANSOURMA,DESSOUKYMM.AgeneticalgorithmapproachforsolvingthedailyphotographselectionproblemoftheSPOT5satellite
GLOBUSA,CRAWFORDJ,LOHNJ,etal.Schedulingearthobservingsatelliteswithevolutionaryalgorithms
CHENM,WENJ,SONGYJ,etal.Apopulationperturbationandeliminationstrategybasedgeneticalgorithmformulti-satelliteTT&Cschedulingproblem
FONSECACM,FLEMINGPJ.Anoverviewofevolutionaryalgorithmsinmultiobjectiveoptimization
DENGW,ZHANGX,ZHOUY,etal.Anenhancedfastnon-dominatedsolutionsortinggeneticalgorithmformulti-objectiveproblems
DEBK,PRATAPA,AGARWALS,etal.Afastandelitistmultiobjectivegeneticalgorithm:NSGA-II
CHENY,XUM,SHENX,etal.Amulti-objectivemodelingmethodofmulti-satelliteimagingtaskplanningforlargeregionalmapping
WANGH,JIAOL,YAOX.Two_Arch2:Animprovedtwo-archivealgorithmformany-objectiveoptimization
WEIL,XINGL,WANQ,etal.Amulti-objectivememeticapproachfortime-dependentagileearthobservationsatelliteschedulingproblem
MOSCATOP.Onevolution,search,optimization,geneticalgorithmsandmartialarts:Towardsmemeticalgorithms
WANGJ,JINGN,LIJ,etal.Amulti-objectiveimagingschedulingapproachforearthobservingsatellites
ZITZLERE,LAUMANNSM,THIELEL.SPEA2:Improvingthestrengthparetoevolutionaryalgorithm
DEBK,SUNDARJ.Referencepointbasedmulti-objectiveoptimizationusingevolutionaryalgorithms
SAIDLB,BECHIKHS,GHéDIRAK.TheR-dominance:Anewdominancerelationforinteractiveevolutionarymulticriteriadecisionmaking
MOLINAJ,SANTANALV,HERNáNDEZ-DíAZAG,etal.G-dominance:ReferencepointbaseddominanceforMmultiobjectivemetaheuristics
THIELEL,MIETTINENK,KORHONENPJ,etal.Apreference-basedevolutionaryalgorithmformulti-objectiveoptimization
BEUMEN,NAUJOKSB,EMMERICHM.SMS-EMOA:Multiobjectiveselectionbasedondominatedhypervolume
TRAUTMANNH,WAGNERT,BROCKHOFFD.R2-EMOA:focusedmultiobjectivesearchusingR2-indicator-basedselection
WANGY,LIL,YANGK,etal.Anewapproachtotargetregionbasedmultiobjectiveevolutionaryalgorithms
LIL,WANGY,TRAUTMANNH,etal.Multiobjectiveevolutionaryalgorithmsbasedontargetregionpreferences
LIL,CHENH,LIJ,etal.Preference-basedevolutionarymany-objectiveoptimizationforagilesatellitemissionplanning
XIONGM,XIONGW,LIUC.Ahybridmany-objectiveevolutionaryalgorithmwithregionpreferencefordecisionmakers
XIONGM,XIONGW.Aregionpreference-basedoptimizationalgorithmforsatellitemissionplanningproblem
XHAFAF,HERREROX,BAROLLIA,etal.Atabusearchalgorithmforgroundstationschedulingproblem
XHAFAF,HERREROX,BAROLLIA,etal.Evaluationofstrugglestrategyingeneticalgorithmsforgroundstationsschedulingproblem
LALAA,KOLICIV,XHAFAF,etal.Onlocalvs.population-basedheuristicsforgroundstationscheduling
ZHANGZ,XINGL,CHENY,etal.Evolutionaryalgorithmsformany-objectivegroundstationschedulingproblem
SONGYJ,MAX,LIXJ,etal.Learning-guidednondominatedsortinggeneticalgorithmIIformulti-objectivesatelliterangeschedulingproblem
ZHANGJ,XINGL,PENGG,etal.Alarge-scalemultiobjectivesatellitedatatransmissionschedulingalgorithmbasedonSVM+NSGA-II
PETELING,ANTONIOUM,PAPAG.Multi-objectiveapproachestogroundstationschedulingforoptimizationofcommunicationwithsatellits
DEBK,JAINH.Anevolutionarymany-objectiveoptimizationalgorithmusingreference-point-basednondominatedsortingaapproach,partI:Solvingproblemswithboxconstraints
KUKKONENS,LAMPINENJ.GDE3:Thethirdevolutionstepofgeneralizeddifferentialevolution
ZITZLERE,KüNZLIS.Indicator-basedselectioninmultiobjectivesearch
ZHANGQ,LIH.MOEA/D:Amultiobjectiveevolutionaryalgorithmbasedondecomposition
LIAOZ,GONGW,YANX,etal.Solvingnonlinearequationssystemwithdynamicrepulsion-basedevolutionaryalgorithms
GONGW,WANGY,CAIZ,etal.Findingmultiplerootsofnonlinearequationsystemsviaarepulsion-basedadaptivedifferentialevolution