特征可以很具体也可以很抽象,在图像中,每一个像素点都是一个特征,一个28*28的图像有784个特征。所以,特征将很大程度上决定了算法结果的准确性和可靠性。这就是特征工程。
机器学习的基本任务1.分类
2.回归
回归任务的特点:结果是一个数字的值,而非一个类别。比如预测房子价格,比如预测一个学生成绩,股票价格等等。在一些情况下,回归任务可以简化成分类任务,比如预测一个学生的成绩,可以将成绩分为几个不同的等级,这样就能将一个连续的回归问题转换为分类问题。
机器学习算法的目的就是帮助我们建立一个模型f(x),而不是我们人为建模得到的。其实分类和回归问题大多都是在监督学习中完成的。
二、机器学习的分类
2、非监督学习
降维
3、半监督学习
4、强化学习
三、机器学习的其他分类1、批量学习(离线学习)和在线学习
比如一个线性拟合问题y=wx+b,我们需要学习的参数就是w和b,参数学习的一个特点就是一旦学习到了参数,就不再需要原来的数据集。
相对的非参数学习,不需要对模型进行过多的假设,通常在预测的过程中,喂给机器学习算法的那些数据集也要参数预测的过程,此外,需要特别注意的一点就是,非参数学习不等于没参数!
四、机器学习的“哲学”思考
数据越多越好?
2001年,微软的一篇论文,对比了四个不同的机器学习算法,给予足够多的数据时,四种算法的表现都是随着数据集的不断增大,准确率越高,当数据量大到一定程度的时候,算法结果准确度基本差不多。
长沙市望城经济技术开发区航空路6号手机智能终端产业园2号厂房3层(0731-88081133)
THE END