机器学习算法的发展及其在食品领域的应用

1、机器学习算法的发展及其在食品领域的应用朱尹摘要:简介了机器学习,叙述了机器学习的发展,叙述了机器学习算法在食品领域的应用。关键词:机器学习,人工神经网络,食品在机器学习一书中,机器学习(MachineLearning,ML)的定义为:关于某类任务T和性能度量P,如果一个计算机程序能在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E中学习。通俗来说,机器学习是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。下面

3、人类的概念学习过程,并采用逻辑结构或图结构作为机器内部描述。本阶段的代表性工作有温斯顿(Winston)的结构学习系统和海斯罗思(Hayes-Roth)等的基本逻辑的归纳学习系统。1.3第三阶段:复兴时期第三阶段从20世纪70年代中叶到80年代中叶,称为复兴时期。在此期间,人们从学习单个概念扩展到学习多个概念,探索不同的学习策略和方法,且在本阶段已开始把学习系统与各种应用结合起来,并取得很大的成功,促进机器学习的发展。1980年,在美国的卡内基梅隆(CMU)召开了第一届机器学习国际研讨会,标志着机器学习研究已在全世界兴起。机器学习的最新阶段始于1986年。1.4新时期机器学习进入新阶段的重要

4、表现在下列诸方面:(1)机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。(2)结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。(3)机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。(4)各种学习方法的应用范围不断扩大,一部分已形成商品。归纳

5、学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。(5)与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。2.机器学习算法在食品领域的应用机器学习的目标就是在一定的网络结构基础上,构建数学模型,选择相应的学习方式和训练方法,学习输入数据的数据结构和内在模式,不断调整网络参数,通过数学工具求解模型最优化的预测反馈,提高泛化能力、防止过拟合。机

6、器学习算法主要是指通过数学及统计方法求解最优化问题的步骤和过程,在食品领域具有广泛应用,下面以机器人工神经网络举例介绍。2.1人工神经网络简介人工神经网络(ArtificialNeuralNetwork,即ANN)是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种

7、特定的输出函数,称为激励函数(activationfunction)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。常用的神经网络有BP、RBF、SOM、Hopfield等等,其功能不经相同2.2人工神经网络在食品领域的应用2.2.1水果分级和分类杨宝华等人利用BP神经网络研究了西瓜种仁质量的预测。根据园艺试验田多年跟踪测量西瓜生长指标,随机抽取每年的部分数据来预测种仁质量,输出层节点代表种仁质量。其

8、设计的神经网络的预测模型确定输入层为4个神经元,计算隐层神经元数确定为4,输出因子为1个,所以确定输出层为1个神经元。设定最大的迭代次数为100次,系统全局误差小于0.001。经过6次训练后,网络的目标误差达到要求,用训练好的网络预测输入向量,仿真输出结果。将预测值与待预测目标值比较,计算相对误差,结果相对误差在20%上下波动。考虑到样本的数据较少,还有数据测量的偏差,这个误差是可以接受的。BP网络经有效训练后应用于西瓜仁质量预测,具有较高的预测精度和良好的泛化能力。Kondo等人通过机器视觉系统采集“Izokan”甜橙图像,以图像红色分量R与绿色分量G的比率、果形指数、质量和果面粗糙度为输

THE END
1.独家菜鸟级机器学习入门(附代码实例)现在当这些算法需要训练(Train)和校对(Calibrate)的时候, 其实是需要去找出一组点之间的最小距离。让我们看图更能说清楚。 以上图为例。这是一个经典的线性回归(Simple Linear Regression)的例子。蓝点表示想要预测的数据。红线表示“最佳拟和线”,该线是机器学习https://mp.weixin.qq.com/s?__biz=MzI1MjQ2OTQ3Ng==&mid=2247496248&idx=1&sn=ea19a9160d85b92060eafd4eeef8ce36&chksm=e9e1fbb3de9672a56e3c7c35792536e5abd1cf536d829beeeed52e1182059642c88e2b4ac4f7&scene=27
2.67页PPT,学透机器学习算法应用及数据处理(附下载)作为AI的重要分支,机器学习在推荐系统、在线广告、金融市场分析、计算机视觉、语言学、生物信息学等诸多领域都取得了巨大的成功。机器学习并不是像我们字面理解的那样,让冷冰冰的机器去学习,或者狭义的理解为让机器人去学习。 机器学习,从本质上来说,可以理解为算法学习(Algorithm Learning)、模型学习(Model Learning)或https://www.jianshu.com/p/fd5cff6ce3bf
3.机器学习实习记录:探索机器学习算法的实践与应用机器学习在这篇文章中,我将分享我的机器学习实习经历,包括实践项目的详细描述以及相应的源代码。通过这些实践项目,我深入了解了机器学习算法的原理,并将其应用于不同的领域,以解决现实世界中的问题。 项目1:房价预测 在这个项目中,我使用了一个经典的机器学习算法——线性回归,来预测房屋的价格。首先,我收集了一个包含房屋https://download.csdn.net/blog/column/12438025/133230425
4.张量神经网络机器学习算法及其应用题目:张量神经网络机器学习算法及其应用报告人:谢和虎 研究员 中国科学院数学与系统科学研究院)时间:2023年9月19日(星期二)15:00-16:00地点:宁静楼117室报告摘要:本报告介绍我们最近设计和发展的张量神经网络及其相应的机器学习算法,然后介绍其在求解高维偏微分方https://math.tongji.edu.cn/info/1385/10895.htm
5.机器学习及其应用——汪荣贵杨娟薛丽霞编著深度凝练机器学习的现有知识体系,注重突出对基本理论与关键技术的介绍和讨论。 尽可能用朴实的语言深入浅出地介绍机器学习理论及相关算法设计技术。 在每个章节穿插相应的应用实例,使得广大读者能够比较系统地掌握机器学习应用技术。 本书教学资源,样书可添加小编微信13146070618索取 《机器学习及其应用》比较系统地介绍机器学http://www.cmpedu.com/books/book/5600562.htm
6.字节跳动AI高级产品经理田宇洲:AI产品经理需要掌握的核心算法这个问题我们拆解开看,先说AI产品经理,我个人接触到的AI产品经理可以分为两类,一类是将机器学习和深度学习能力产品化的产品经理,如阿里PI,第四范式先知平台的产品经理,或者BI系统中负责机器学习算法模块组件化抽象的产品经理;一类是AI解决方案产品经理,也就是将AI技术(机器学习,深度学习等技术)应用于业务或用户使用场https://maimai.cn/article/detail?fid=1246742214&efid=hW5NlFAEkS-MHjfZl5IAxg
7.机器学习(32)之典型相关性分析(CCA)详解文末有福利【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 人工智能与Python公开课 限时免费 文末领取 前言 典型关联分析(Canonical Correlation Analysis,简称CCA)是最常用的挖掘数据关联关系的算法之一。比如我们拿到两组数据,第一组是人身高和体重的数据,第二组是对应的跑步能力https://cloud.tencent.com/developer/article/1085170
8.BoostKit大数据业界趋势鲲鹏大数据组件增强特性和典型配置业务场景延伸,数据量爆发式增长,使得开源大数据机器学习算法的应用场景广泛而多样。但随之也带来了更大的挑战,开源算法收敛速度慢,硬件匹配度不足,导致很多场景算不了、算不快、算得贵。 鲲鹏应用使能套件BoostKit提供基于开源算法深度优化的机器学习算法,为开发者提供极致性能的大数据分析体验。 https://developer.huawei.com/consumer/cn/blog/topic/03898238728230088
9.数字化观察(100)华夏银行吴永飞等:数字金融领域小样本学习技术的机器学习算法模型 传统的商业银行风控体系以定性风险管理为主,主要使用风控规则及客户评级等方法,辅以线下尽调的方法;传统风控模型对包含客户历史行为和相关活动的数据进行分析,但难以预测性地揭示未来风险的变化情况,且数据获取方式单一、定量分析结果相对较弱。数字经济时代下面向数字金融发展,商业银行越来越强调运用金融https://bank.hexun.com/2022-05-31/206058282.html
10.《常用算法之智能计算(三)》:机器学习计算从更广泛的意义上来看,机器学习是人工智能的一个子集。人工智能旨在使计算机更加智能化,而机器学习已经证明如何做到这一点。简而言之,机器学习是人工智能的应用,通过应用从数据中反复学习得到算法,可以改进计算机的功能,而无需进行明确的编程。 在给出机器学习计算各种算法之前,最好是先研究一下什么是机器学习和如何对http://www.kepu.net/blog/zhangjianzhong/201903/t20190327_475625.html