美赛国赛数学建模知识

数学建模知识——之参考资料一、数学建模竞赛中应当掌握的十类算法1.蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。

2.数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。

3.线性规划、整数规划、多元规划、二次规划等规划类问题建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。

4.图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5.动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7.网格算法和穷举法网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8.一些连续离散化方法很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9.数值分析算法如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10.图象处理算法赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

二、数学软件的主要分类有哪些?各有什么特点?数学软件从功能上分类可以分为通用数学软件包和专业数学软件包,通用数学包功能比较完备,包括各种数学、数值计算、丰富的数学函数、特殊函数、绘图函数、用户图形届面交互功能,与其他软件和语言的接口及庞大的外挂函数库机制(工具箱)。

常见的通用数学软件包包括Matlab和Mathematica和Maple,其中Matlab是一个高性能的科技计算软件,广泛应用于数学计算、建模、仿真和数据分析处理及工程作图,Mathematica是数值和符号计算的代表性软件,Maple以符号运算、公式推导见长。

专用数学包包括绘图软件类MathCAD,Tecplot,IDL,Surfer,Origin,SmartDraw,DSP2000),数值计算类:(Matcom,IDL,DataFit,S-Spline,Lindo,Lingo,O-Matrix,Scilab,Octave),数值计算库(linpack/lapack/BLAS/GERMS/IMSL/CXML),有限元计算类(ANSYS,MARC,PARSTRAN,FLUENT,FEMLAB,FlexPDE,Algor,COSMOS,ABAQUS,ADINA),计算化学类(Gaussian98,Spartan,ADF2000,ChemOffice),数理统计类(GAUSS,SPSS,SAS,Splus,statistica,minitab),数学公式排版类(MathType,MikTeX,ScientificWorkplace,ScientificNootbook)。

开始阶段不忙写作,可以将一些小组讨论的要点记录下来,不要太工整,随便一下,到第三天再开始写论文也不迟的。

另外要说的就是体力要跟上,三天一般睡眠只有不到10个小时。

建议是赛前熬夜编程几次,但比赛前一天可不许熬呀,呵呵。

当出现分歧的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,不要总认为自己的观点是正确的,多听听别人的观点,在两者之间谋求共同点。

合作在竞赛前就应当培养,比如一块儿做一道题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法,然后几天后大家一块交流,这些都是可以磨合团队之间的关系的。

3.重视摘要摘要首先不要写废话,也不要照抄题目的一些话,直奔主题,要写明自己怎样分析问题,用什么方法解决问题,最重要的是结论是什么要说清楚,在中国的竞赛中不写结论的话是一定不会得奖的。

摘要至少需要琢磨两个小时,不要轻视了它的重要性。

多看看优秀论文的摘要是如何去写的很有必要的,并要作为赛前准备的课题之一。

4.论文写作要正规论文一定要大致按照摘要、问题重述、模型假设、符号说明、问题分析、(建立、分析、求解模型)、……、参考文献、附录等等的方式来写。

论文前面的结构一般都不会变的,后面可以按照实际情况来安排自己的结构,省略的部分可以有结果说明、灵敏度分析、其他模型、模型扩展、优缺点分析等等的东西,多看些优秀论文就知道还有哪些形式的了,附录可以贴一些算法流程图或比较大的结果或图表等等。

5.模型的假设与模型的建立评委看完摘要后紧接着就是看模型假设了,有一个万能的方法就是可以抄题目中可以作为假设的几句话,这样会给人留下好的印象,毕竟说明你审题了。

但不能全抄,要加上自己论文中的一些假设,最好不要太具体了,一些重要参数不要被定死只能取某些值,这样会让人感觉到论文的局限性较强。

模型的建立是根据你对问题分析而来的,提出的数学符号和建立模型最好要比较接近,在同一页最好,以便评委可以对照符号来看,数学公式要严谨,推导要严密,这些都反映了一个人的数学素质和能力,即使你推导不对,别人看到你的阵势也首先会误以为你是对的。

6.图文表并茂可以增色我听说一个不确切的信息是评委老师喜欢用Matlab编程的论文,不知道有没有这回事,但这说明了老师需要看一个具有图或表在其中的论文,一篇如果像政治书那样写的论文估计没有人会对它感兴趣的,尤其是科技论文。

Matlab编程之所以受到青睐是因为Matlab提供的图形处理能力很强大,图表的说明性特别强,如果结论有很多数据的话,最好做成图表的形式加以说明,会令你的论文更有说服力,也更加会受到评委的好评。

数学建模知识———之论文写作一、写好数模答卷的重要性1.评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。

2.答卷是竞赛活动的成绩结晶的书面形式。

3.写好答卷的训练,是科技写作的一种基本训练。

二、答卷的基本内容,需要重视的问题1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。

2)问题的叙述,问题的分析,背景的分析等。

3)模型的假设,符号说明(表)。

4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。

5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。

6)结果表示、分析与检验,误差分析,模型检验。

7)模型评价,特点,优缺点,改进方法,推广。

8)参考文献。

9)附录、计算框图、详细图表。

3.要重视的问题1)摘要。

包括:a.模型的数学归类(在数学上属于什么类型);b.建模的思想(思路);c.算法思想(求解思路);d.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e.主要结果(数值结果,结论;回答题目所问的全部“问题”)。

务必认真校对。

2)问题重述。

3)模型假设。

根据全国组委会确定的评阅原则,基本假设的合理性很重要。

a.根据题目中条件作出假设b.根据题目中要求作出假设关键性假设不能缺;假设要切合题意。

4)模型的建立。

a.基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明;b.简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出;c.模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。

ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

d.鼓励创新,但要切实,不要离题搞标新立异。

数模创新可出现在:▲建模中,模型本身,简化的好方法、好策略等;▲模型求解中;▲结果表示、分析、检验,模型检验;▲推广部分。

e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。

5)模型求解。

a.需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。

b.需要说明计算方法或算法的原理、思想、依据、步骤。

若采用现有软件,说明采用此软件的理由,软件名称。

c.计算过程,中间结果可要可不要的,不要列出。

d.设法算出合理的数值结果。

6)结果分析、检验;模型检验及模型修正;结果表示。

a.最终数值结果的正确性或合理性是第一位的;b.对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进。

c.题目中要求回答的问题,数值结果,结论,须一一列出;d.列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;e.结果表示:要集中,一目了然,直观,便于比较分析。

▲数值结果表示:精心设计表格;可能的话,用图形图表形式。

▲求解方案,用图示更好。

7)必要时对问题解答,作定性或规律性的讨论。

最后结论要明确。

8)模型评价优点突出,缺点不回避。

改变原题要求,重新建模可在此做。

推广或改进方向时,不要玩弄新数学术语。

9)参考文献10)附录详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。

主要结果数据,应在正文中列出,不怕重复。

检查答卷的主要三点,把三关:a.模型的正确性、合理性、创新性b.结果的正确性、合理性c.文字表述清晰,分析精辟,摘要精彩三、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数。

四、答卷要求的原理1.准确――科学性;2.条理――逻辑性;3.简洁――数学美;4.创新――研究、应用目标之一,人才培养需要;5.实用――建模、实际问题要求。

五、建模理念1.应用意识要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。

2.数学建模用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。

3.创新意识建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1.模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2.模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3.模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

4.模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。

一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

5.模型分析对模型解答进行数学上的分析。

“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。

还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

例题:一个笼子里装有鸡和兔若干只,已知它们共有8个头和22只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡x只,有兔y只,由已知条件有x+y=82x+4y=22求解如上二元方程后,得解x=5,y=3,即该笼子中有鸡5只,有兔3只。

将此结果代入原题进行验证可知所求结果正确。

根据例题可以得出如下的数学建模步骤:1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外)2)用字母表示要求的未知量3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有2只脚,兔有4只脚)4)求出数学式子的解答5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。

对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。

其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。

四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分:1.实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。

一般都有一个比较确切的现实问题。

2.若干假设条件有如下几种情况:1)只有过程、规则等定性假设,无具体定量数据;2)给出若干实测或统计数据;3)给出若干参数或图形;4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。

3.要求回答的问题往往有几个问题,而且一般不是唯一答案。

一般包含以下两部分:1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。

五、提交一篇论文,基本内容和格式是什么?提交一篇论文,基本内容和格式大致分三大部分:1.标题、摘要部分题目——写出较确切的题目(不能只写A题、B题)。

摘要——200-300字,包括模型的主要特点、建模方法和主要结果。

内容较多时最好有个目录。

2.中心部分1)问题提出,问题分析。

2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质;3)计算方法设计和计算机实现。

4)结果分析与检验。

5)讨论——模型的优缺点,改进方向,推广新思想。

6)参考文献——也有特定格式。

3.附录部分计算程序,框图。

各种求解演算过程,计算中间结果。

各种图形、表格。

很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。

有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。

上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,记得数模评卷的负责教师曾经说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。

第二方面:计算机的运用能力一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。

要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。

七、如何从建模例题中学习解题方法在看例题的时候,要看例题是如何作的,即是如何切入,如何选择合理假设,如何分析建立的模型等。

数学建模方法常见有:一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。

1.比例分析法--建立变量之间函数关系的最基本最常用的方法。

2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3.逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。

二、数据分析法从大量的观测数据利用统计方法建立数学模型1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

三、仿真和其他方法1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。

①离散系统仿真--有一组状态变量。

②连续系统仿真--有解析表达式或系统结构图。

2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。

八、小组中应该如何分工?传统的标准答案是——数学,编程,写作。

THE END
1.数学学院在山东大学首届优秀教材奖(本科)评选中获佳绩其中,数学学院共有9本教材获奖,分别是刘建亚教授、吴臻教授主编的《大学数学教程-微积分(1)(2)》(第3版)、《大学数学教程-线性代数》(第4版)、《大学数学教程-概率论与数理统计》(第3版)、《大学数学教程-复变函数与积分变换》(第3版),刁在筠教授主编的《运筹学》(第5版),吴臻教授主编的《现代最优控制https://www.math.sdu.edu.cn/info/1096/20454.htm
2.数学建模与数据分析的论述题mob64ca140f29e5的技术博客约束条件:保障天数不少于XX天,人均分发数量不少于XX,市场价格不高于XX元,储备点位置与最近分发点距离不大于XX千米等等 对问题三的分析 调整蔬菜包供应方案 需求和发放规律:地点和相应发放量等 评价供应方案:传统的评价类模型均可 调整供应方案:本质还是优化,在第二问的基础上,加上根据相应附件中数据定义的新变量(例https://blog.51cto.com/u_16213679/12866120
3.华中农业大学《算法分析与设计实验》2021自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页华中农业大学《算法分析与设计实验》 2021-2022学年第一学期期末试卷院(系)___班级___学号___姓名___题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,https://www.renrendoc.com/paper/369289709.html
4.《算法》作者:塞奇威克韦恩索书号:TP301.6/3045《算法》是一《算法》 作者:塞奇威克 韦恩 索书号:TP301.6/3045 《算法》是一本十分出色的书籍,它深入浅出地讲解了各种算法的原理和实现。从排序、搜索等基础算法到图算法、字符串算法等高级算法,都有清晰的阐述和生动的示例,并且结合实际应用场景,让你轻松理解算法的精妙之处。无论你是编程新手还是有一定经验的开发者,都能https://weibo.com/1962607072/P5JE0b0tP
5.数学建模算法与应用第三版pdf本书第三版在前两版的基础上进行了更新和完善,包含了更多的实例和应用算法。以下是对《数学建模算法与应用第三版》的一篇1200字以上的综述。 《数学建模算法与应用第三版》详细介绍了数学建模的基本理论和方法,并提供了多个实例和应用算法的案例。本书共分为十章,每一章都涵盖了不同的数学建模技术和应用场景。 https://wenku.baidu.com/view/76240f80f405cc1755270722192e453611665b25.html
6.数学建模算法与应用电子版,数学建模算法与应用第三版pdf资源《数学建模算法与应用》是一本深入探讨数学建模理论与实践的电子书籍,它不仅涵盖了传统教科书中的基础知识,还包含了丰富的扩展内容,旨在帮助读者更全面地理解和应用数学建模方法。数学建模是利用数学工具对实际问题进行抽象、简化并建立模型的过程,它在科学、工程、经济、社会等多个领域都有着广泛的应用。 本书可能包括https://download.csdn.net/download/baidu_29913087/8913391
7.高等代数(北大版第三版)习题答案经管文库(原现高等代数(北大版第三版)习题答案 https://bbs.pinggu.org/forum.php?mod=viewthread&tid=13348772&ordertype=2
8.《数学建模算法与应用及习题解答(第3版)司守奎第三版教材全国大学生数书香云游图书专营店 登录查看更多图片 > 数学建模算法与应用及习题解答(第3版)司守奎第三版教材全国大 京东价 ¥ 促销 展开促销 配送至 --请选择-- 支持 加入购物车 https://item.jd.com/10108332728573.html
9.数学建模算法与应用习题解答pdf版《普通高等院校'十二五'规划教材:数学建模算法与应用习题解答》是国防工业出版社出版的《数学建模算法与应用》的配套书籍。《普通高等院校'十二五'规划教材:数学建模算法与应用习题解答》给出了《数学建模算法与应用》中全部习题的解答及程序设计,另外针对选修课的教学内容,又给出一些补充习题及解答。《普通高等院校'十二https://www.iteye.com/resource/qq_37526343-9991710
10.《数学建模算法与应用》司守奎的电子版在哪里找?第3版和第2版都有 链接:https://pan.baidu.com/s/1SJpEZKWicHJTonzwoTlFTg 提取码: 88id https://www.zhihu.com/question/521449786/answer/3419583478
11.运筹学课程的教学12篇(全文)运筹学是一门数学、建模和算法相交融的学科, 可以对复杂的应用性较强的问题求解得到最优解、满意解或者局部最优解。主要可以解决经济、管理、军事、生产等各方面提出来的物流、仓储、人事、武器配备等方面的运筹问题, 包括规划问题、图和网络问题、排队论问题、存储论问题、对策与决策问题以及计算机仿真多方面的知识。https://www.99xueshu.com/w/ikey1v449tle.html
12.数学建模教材(447.0MB)百度网盘资源下载数学建模与数学实验(第三版).rar13.7MB 数学建模与数学实验(第 3 版).pdf22.0MB 数学建模与数学实验-书.pdf5.2MB 数学建模与数学实验 汪晓银 科学出版社.pdf22.5MB 数学建模与数学实验 matlab 第2版.pdf2.0MB 数学建模优秀论文.doc611KB 数学建模算法与应用.pdf5.7MB https://www.iizhi.cn/resource/detail/89b97a60a576fdfb930240a2e697d111
13.数学建模1. 数学建模算法与应用,司守奎、孙玺菁编著,国防工业出版社(2012). 2.数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版,2011年第四版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 3.数学建模方法与案例,张万龙,等编著,国防工业出版社(2014). 4http://baike.soso.com/v164246.htm?pid=baike.box
14.海军大连舰艇学院2012年硕士复试考纲及书目2.《数字信号处理——理论、算法与实现》(第二版),胡广书编著,清华大学出版社,2003 考试纲目:1. 通信原理:通信系统的组成、分类与通信方式、信息的度量及通信系统主要性能指标;信道的特性及其对信号传输的影响;模拟调制系统;模拟信号的数字传输;数字基带传输系统;数字带通传输系统;新型数字带通调制技术;数字信号的最https://yz.kaoyan.com/liyf7676/luqu/26/362075/
15.建模具体说来,大概有以下这三个方面: 第一方面:数学知识的应用能力 归结起来大体上有以下几类: 1)概率与数理统计 2)统筹与线轴规划 3)微分方程; 还有与计算机知识交叉的知识:计算机模拟。 上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过http://www.360doc.com/content/12/0418/15/3198385_204655564.shtml