机器学习培训MKTporter

Python带来的开发速度和C++带来的执行速度。

caffe/caffe2

1建立数据集

2设置参数彩色或黑白

3选择数据地址

小心空格

4为数据集起名字

建立第二个数据集

建立模型

层数选择10

网络模型选择

名字

开始运行

测试图片

输入测试图片,点击classify执行

结果

测试多张图片

回到教程,选择下一步

找到代码,选中按shift+enter

保存

/notebooks/test_images/image-1-1.jpg/notebooks/test_images/image-2-1.jpg/notebooks/test_images/image-3-1.jpg/notebooks/test_images/image-4-1.jpg/notebooks/test_images/image-7-1.jpg/notebooks/test_images/image-8-1.jpg/notebooks/test_images/image-8-2.jpg保存tet文件

上传开始

提高模型,增大数据集

等待运行完

加载有点慢

新建模型

开训练

训练完,使用测试图实验

上传图片路径txt文件测试多张图片

选择新的开始按钮

也可以自己手写,画板大小保存成28*28

打开画板

点击下方

网络模型优化

选中模型克隆

可观看可视化的图

(上图绿色模块为下面添加的层)

67{}最后面加入一层

layer{name:"reluP1"type:"ReLU"bottom:"pool1"top:"pool1"}

改为75

改为100

保存修改后的模型

重新开始识别上传手写字符

目前为止我们所有创建的数据集和模型

AnintroductiontoDeepLearningInthislab,you'lllearntotrainaneuralnetworkusingcleanlabeleddata.We'llintroducedeeplearningthroughthetaskofsupervisedimageclassification,where,givenmanyimagesandtheirlabels,you'llbuildatoolthatcanpredictlabelsofnewimages.

Theintentistobuildtheskillstostartexperimentingwithdeeplearning.You'llexamine:

Attheendofthislab,you'llhaveatrainedneuralnetworkthatcansuccessfullyclassifyimagestosolveaclassicdeeplearningchallenge:

Howcanwedigitizehandwriting

Thefundamentaldifferencebetweenartificialintelligence(AI)andtraditionalprogramingisthatAIlearnswhiletraditionalalgorithmsareprogrammed.Let'sexaminethedifferencethroughanexample:

Imagineyouwereaskedtogivearobotinstructionstomakeasandwichusingtraditionalcomputerprogramming,instructionbyinstruction.Howmightyoustart

Maybesomethinglike:Addtwopiecesofbreadtoanemptyplate.

Runthecodebelowtoseewhattherobotmightdowithyourfirstinstruction.Toruncode,clickonIn[]andpressShift+Enter.

readyPlate=2*bread+emptyPlateYoulikelygota"NameError."Howwouldyouthenworktodefine"bread"toyourrobotNottomentionotheringredientsandhowtocombinethem

Computersonly"see"imagesastheamountofred,blue,andgreenateachpixel.Everythingelsewewantthemtoknow,wewouldhavehadtodescribeintermsofpixels.

Artificialintelligencetakesadifferentapproach.Insteadofprovidinginstructions,weprovideexamples.Above,wecouldshowourrobotthousandsoflabeledimagesofbreadandthousandsoflabeledimagesofotherobjectsandaskourrobottolearnthedifference.Ourrobotcouldthenbuilditsownprogramtoidentifynewgroupsofpixels(images)asbread.

Insteadofinstructions,wenowneeddataandcomputersdesignedtolearn.

Sohowdoweexposeartificialneuralnetworkstodata

Bytheendofthislab,you'llknowhowtoloaddataintoadeepneuralnetworktocreateatrainedmodelthatiscapableofsolvingproblemswithwhatitlearned,notwhataprogrammertoldittodo.

Sinceacomputer"sees"imagesascollectionsofpixelvalues,itcan'tdoanythingwithvisualdataunlessitlearnswhatthosepixelsrepresent.

Whatifwecouldeasilyconverthandwrittendigitstothedigitalnumberstheyrepresent

We'regoingtotrainadeepneuralnetworktorecognizehandwrittendigits0-9.Thischallengeiscalled"imageclassification,"whereournetworkwillbeabletodecidewhichimagebelongstowhichclass,orgroup.

Forexample:Thefollowingimageshouldbelongtotheclass'4':

whereasthisnextimageshouldbelongtotheclass'2':

It'simportanttonotethatthisworkflowiscommontomostimageclassificationtasks,andisagreatentrypointtolearninghowtosolveproblemswithDeepLearning.

Let'sstart.

Let'sstartbybringingourdata,inthiscase,thousandsofimages,intoourlearningenvironment.We'regoingtouseatoolcalledDIGITS,wherewecanvisualizeandmanageourdata.

First,openDIGITSinanewtabusingthefollowinglink.

WhenyoustartDIGITS,youwillbetakentothehomescreenwhereyoucancreatenewdatasetsornewmodels.

BeginbyselectingtheDatasetstabontheleft.

Sincewewantournetworktotelluswhich"class"eachimagebelongsto,weaskDIGITStopreparea"classification"imagedatasetbyselecting"Classification"fromthe"Images"menuontheright.

Atthispointyoumayneedtoenterausername.Ifrequested,justenteranynameinlower-case.

You'llseethatyou'vegotalotofoptionsaroundhowtoloadadataset.Forthisfirstrunthrough,we'regoingtosimplifyandonlyfillouttwofields.

Don'tsee"TrainingImages"Click"DIGITS"onthetopleftandselect"Datasets"beforeselecting"Images"and"Classification."

Notethatwe'vealreadydownloadedthedatasettothecomputerwhereDIGITSisrunning.You'llhaveachancetoexploreitshortlyandwilllearnmethodsforaccessingdataasyouworkthroughourlabs.

Thenpress"Create."

DIGITSisnowcreatingyourdatasetfromthefolder.Insidethefoldertrain_smalltherewere10subfolders,oneforeachclass(0,1,2,3,...,9).Allofthehandwrittentrainingimagesof'0'sareinthe'0'folder,'1'sareinthe'1'folder,etc.

Explorewhatourdatalookslikebyselecting"Explorethedb".

Whilethereisanendlessamountofanalysisthatwecoulddoonthedata,makesureyouatleastnotethefollowing:

Next,we'regoingtouseourdatatotrainanartificialneuralnetwork.Likeitsbiologicalinspiration,thehumanbrain,artificialneuralnetworksarelearningmachines.Alsolikethebrain,these"networks"onlybecomecapableofsolvingproblemswithexperience,inthiscase,interactingwithdata.Throughoutthislab,we'llreferto"networks"asuntrainedartificialneuralnetworksand"models"aswhatnetworksbecomeoncetheyaretrained(throughexposuretodata).

Forimageclassification(andsomeothertasks),DIGITScomespre-loadedwithaward-winningnetworks.Aswetakeondifferentchallengesinsubsequentlabs,we'lllearnmoreaboutselectingnetworksandevenbuildingourown.However,tostart,weighingthemeritsofdifferentnetworkswouldbelikearguingabouttheperformanceofdifferentcarsbeforedrivingforthefirsttime.Buildinganetworkfromscratchwouldbelikebuildingyourowncar.Let'sdrivefirst.We'llgetthere.

GotothetabwhereDIGITSisstillopenandreturntothemainscreenbyclicking"DIGITS"onthetopleftofthescreen.

CreatinganewmodelinDIGITSisalotlikecreatinganewdataset.Fromthehomescreen,the"Models"tabwillbepre-selected.Click"Images"under"NewModel"andselect"Classification",aswe'recreatinganimageclassificationmodeltomatchourimageclassificationdatasetandimageclassificationtask.

Again,forthisfirstroundoftraininglet'skeepitsimple.Thefollowingarethefewestsettingsyoucouldpossiblysettosuccessfullytrainanetwork.

Whenyouhavesetalloftheseoptions,presstheCreatebutton.

Youarenowtrainingyourmodel!Forthisconfiguration,themodeltrainingshouldcompleteinlessthan5minutes.Youcaneitherwatchittrain,continuereading,orgrabacupofcoffee.

Whendone,theJobStatusontherightwillsay"Done",andyourtraininggraphshouldlooksomethinglike:

We'lldigintothisgraphasatoolforimprovement,butthebottomlineisthatafter5minutesoftraining,wehavebuiltamodelthatcanmapimagesofhandwrittendigitstothenumbertheyrepresentwithanaccuracyofabout87%!

Let'stesttheabilityofthemodeltoidentifynewimages.

Nowthatourneuralnetworkhaslearnedsomething,inferenceistheprocessofmakingdecisionsbasedonwhatwaslearned.Thepowerofourtrainedmodelisthatitcannowclassifyunlabeledimages.

We'lluseDIGITStotestourtrainedmodel.Atthebottomofthemodelwindow,youcantestasingleimageoralistofimages.Ontheleft,typeinthepath/data/test_small/2/img_4415.pngintheImagePathtextbox.SelecttheClassifyOnebutton.Afterafewseconds,anewwindowisdisplayedwiththeimageandinformationaboutitsattempttoclassifytheimage.

Itworked!(Tryagainifitdidn't).Youtookanuntrainedneuralnetwork,exposedittothousandsoflabeledimages,anditnowhastheabilitytoaccuratelypredicttheclassofunlabeledimages.Congratulations!

Notethatthatsameworkflowwouldworkwithalmostanyimageclassificationtask.YoucouldtrainAlexNettoclassifyimagesofdogsfromimagesofcats,imagesofyoufromimagesofme,etc.Ifyouhaveextratimeattheendofthislab,theresanotherdatasetwith101differentclassesofimageswhereyoucanexperiment.

Whileyouhavebeensuccessfulwiththisintroductorytask,thereisalotmoretolearn.

Inthenextnotebook,youwillworktodefineandimproveperformance.

第二个教程

Nowthatyou'velearnedtosuccessfullytrainamodel,let'sworktotrainastateoftheartmodel.Inthislab,we'lllearntheleversthatyou,asadeeplearningpractitioner,willusetonavigatetowardsdesiredresults.Intheprocess,we'llstarttopeelbackthelayersaroundthetechnologythatmakesthispossible.

Let'sbringbackourhandwrittendigitclassifier.GotoDIGITS'homescreenbyclickingtheDIGITSlogoonthetopleftofthescreen.Here,you'llsee(atleast)twomodels.Choosethefirstmodelyoucreated,inourcase,"Myfirstmodel."

Amongotherthings,DIGITSwilldisplaythegraphthatwasgeneratedasthemodelwasbeingtrained.

Threequantitiesarereported:trainingloss,validationloss,andaccuracy.Thevaluesoftrainingandvalidationlossshouldhavedecreasedfromepochtoepoch,althoughtheymayjumparoundsome.Theaccuracyisthemeasureoftheabilityofthemodeltocorrectlyclassifythevalidationdata.Ifyouhoveryourmouseoveranyofthedatapoints,youwillseeitsexactvalue.Inthiscase,theaccuracyatthelastepochisabout87%.Yourresultsmightbeslightlydifferentthanwhatisshownhere,sincetheinitialnetworksaregeneratedrandomly.

Analyzingthisgraph,onethingthatjumpsoutisthataccuracyisincreasingovertimeandthatlossisdecreasing.Anaturalquestionmaybe,"willthemodelkeepimprovingifweletittrainlonger"Thisisthefirstinterventionthatwe'llexperimentwithanddiscuss.

Followingtheadviceofparentsandteacherseverywhere,let'sworktoimprovetheaccuracyofourmodelbyaskingittostudymore.

Anepochisonecompletepresentationofthedatatobelearnedtoalearningmachine.Let'smakesenseofwhatishappeningduringanepoch.

Comparethistoahumanstudysessionusingflashcards:

Youcanseethatoneepochcanbecomparedtoonetripthroughadeckofflashcards.

Inthemodelthatwetrained,weaskedournetworkfor5epochs.Thebluecurveonthegraphaboveshowshowfaroffeachpredictionwasfromtheactuallabel.

Likeahumanstudent,thepointofstudyingisn'tjusttobeabletoreplicatesomeoneelse'sknowledge.Thegreencurveshowsthedifferencebetweenthemodel'spredictionsandactuallabelsforNEWdatathatithasn'tlearnedfrom.Theorangecurveissimpletheinverseofthatloss.

Losscanbemeasuredinmanyways,butconceptually,it'ssimplythedifferencebetweenpredictedandactuallabels.

Ifaftertakingatestandearning87%,ahumanstudentwantedtoimproveperformance,theymightbeadvisedtostudymore.Atthispoint,they'dgobacktotheirflashcards.

Adeeplearningpractitionercouldrequestmoreepochs.Itispossibletostartfromscratchandrequestmoreepochswhencreatingyourmodelforthefirsttime.However,ourmodelhasalreadyspentsometimelearning!Let'susewhatithaslearnedtoimproveourmodelinsteadofstartfromscratch.

HeadbacktoDIGITSandscrolltothebottomofyourmodelpageandclickthebiggreenbuttonlabeled:"MakePretrainedModel."

Thiswillsavetwothings:

Wecannowcreateanewmodelfromthisstartingpoint.GobacktoDIGITS'homescreenandcreateanewImageClassficationmodellikebefore.NewModel(Images)->Classification

Yoursettingsshouldlooklike:

Whenyoucreatethemodel,you'llgetthefollowinggraph.

Notethefollowing:

Let'stestournewandimprovedmodelusingthesameimagefrombefore.Atthebottomofourmodelpage,"Testasingleimage."We'lltestthesame"2"tocompareperformance.Asareminder,theimagepathis:/data/test_small/2/img_4415.png

Recallthatouroriginalmodelcorrectlyidentifiedthisasa2aswell,butwithaconfidenceof85%.Thisisclearlyabettermodel.

Feelfreetotryafewmoreimagesbychangingthenumberafter"img_"

Let'strytestingthemodelwithasetofimages.Theyareshownbelow.

Wecanclassifymultiplefilesifweputtheminthelist.Inthelinkbelow,executethecodeblockandalinktothefilean_image.listwillappear.Rightclickonan_image.listandsavethattoafileonyourlocalcomputer(rightclickand"SaveAs").Rememberthedirectoryinwhichitissaved.

fromIPython.displayimportFileLink,FileLinksFileLinks('test_images_list')OntherightsideoftheDIGITSmodelpage,thereisanoptionto"testalistofimages".PressthebuttonBrowseandselectthean_image.listfileyoujustdownloaded.ThenpresstheClassifyManybutton.Afterseveralseconds,youwillseetheresultsfromCaffetryingtoclassifytheseimageswiththegeneratedmodel.Intheimagename,thefirstnumberisthedigitintheimage(ex.image-3-1.jpgisa3).Yourresultsshouldbesimilartothis:

Whatisshownhereistheprobabilitythatthemodelpredictstheclassoftheimage.Theresultsaresortedfromhighestprobabilitytolowest.Ourmodeldidn'tdosowell.

Whiletheaccuracyofthemodelwas87%,itcouldnotcorrectlyclassifyanyoftheimagesthatwetested.Whatcanwedotoimprovetheclassificationoftheseimages

Atthispointit'stimetobeabitmoreintentional.Afterwecansuccessfullytrainamodel,whatcomesnextcomesfromunderstandingandexperimentation.TobuildabetterunderstandingofTHISproject,weshouldstartwithourdata.Tobuildabetterunderstandingofanything,weshouldstartwithprimarysources.

Onekeyobservationwe'lluseisthattheimagesstartas28x28grayscaleimages.Whenweloadedourdataset,westuckwithdefaults,whichwere256x256andcolor.Youmayhavenoticedthattheimageswereabitblurry.Inthenextsectionwe'llexplorethebenefitsthatcancomefrommatchingyourdatatotherightmodel.

Let'sstartfromscratchusingwhatwe'velearned.Thistime,we'llloadourdataas28x28grayscaleimagesandpickamodelthatisbuilttoacceptthattypeofdata,LeNet.Tocomparetoourpreviousmodel,usethetotalnumberofepochsthatyoutrainedwithsofar,eg.the5in"myfirstmodel"andtheadditionalepochstrainedfromyourpretrainedmodel.InmycaseI'lluse8.

Here'sanimageofthesettingsthatwouldcreatethedataset.

Feelfreeto"explorethedb"again.Inoticeimmediatelythattheimagesarenolongerblurry.

Next,createamodelusingthesettingsintheimagebelow.NotethattheLeNetmodelisdesignedtotake28x28grayscaleimages.You'llseeshortlythatthisnetworkwasactuallypurpose-builtfordigitclassification.

Woah.Youshouldhavenoticedtwothings.

Wehaven'tdoneanythingtoaddresstheproblemofmorediversedata,butifwecantrainfaster,wecanexperimentalotmore.

Inourlastattemptattraining,weonlyused10%ofthefullMNISTdataset.Let'strytrainingwiththecompletedatasetandseehowitimprovesourtraining.WecanusethecloneoptioninDIGITStosimplifythecreationofanewjobwithsimilarpropertiestoanolderjob.Let'sreturntothehomepagebyclickingonDIGITSintheupperleftcorner.ThenselectDatasetfromtheleftsideofthepagetoseeallofthedatasetsthatyouhavecreated.YouwillseeyourMnistsmalldataset.Whenyouselectthatdataset,youwillbereturnedtotheresultswindowofthatjob.Intherightcorneryouwillseeabutton:CloneJob.

PresstheCloneJobbutton.

FromhereyouwillseethecreatedatasettemplatepopulatedwithalltheoptionsyouusedwhenyoucreatedtheDefaultOptionsSmallDigitsdataset.TocreateadatabasewiththefullMNISTdata,changethefollowingsettings:

ThenpresstheCreatebutton.Thisdatasetistentimeslargerthantheotherdataset,soitwilltakeafewminutestoprocess.

Afteryouhavecreatedyournewdatabase,followthesameproceduretocloneyourtrainingmodel.Inthetemplate,changethefollowingvalues:

Thencreatethemodel.

Withmuchmoredata,themodelwilltakelongertorun.Itstillshouldcompleteinlessthanaminute.WhatdoyounoticethatisdifferentabouttheresultsBoththetrainingandvalidationlossfunctionvaluesaremuchsmaller.Inaddition,theaccuracyofthemodelisaround99%,possiblygreater.Thatissayingthemodeliscorrectlyidentifyingmosteveryimageinitsvalidationset.Thisisasignificantimprovement.However,howwelldoesthisnewmodeldoonthechallengingtestimagesweusedpreviously

Usingthesameprocedurefromabovetoclassifyoursetoftestimages,herearethenewresults:

Themodelwasstillonlyabletoclassifyoneofthesevenimages.Whilesomeoftheclassificationscameinaclosesecond,ourmodel'spredictivecapabilitieswerenotmuchgreater.Areweaskingtoomuchofthismodeltotryandclassifynon-handwritten,oftencolored,digitswithourmodel

Youcanseewithourseventestimagesthatthebackgroundsarenotuniform.Inaddition,mostofthebackgroundsarelightincolorwhereasourtrainingdataallhaveblackbackgrounds.Wesawthatincreasingtheamountofdatadidhelpforclassifyingthehandwrittencharacters,sowhatifweincludemoredatathattriestoaddressthecontrastdifferences

Let'stryaugmentingourdatabyinvertingtheoriginalimages.Let'sturnthewhitepixelstoblackandvice-versa.Thenwewilltrainournetworkusingtheoriginalandinvertedimagesandseeifclassificationisimproved.

Todothis,followthestepsabovetocloneandcreateanewdatasetandmodel.Thedirectoriesfortheaugmenteddataare:

Remembertochangethenameofyourdatasetandmodel.Whenthenewdatasetisready,explorethedatabase.Nowyoushouldseeimageswithblackbackgroundsandwhitenumbersandalsowhitebackgroundsandblacknumbers.

Nowtrainanewmodel.Cloneyourpreviousmodelresults,andchangethedatasettotheoneyoujustcreatedwiththeinvertedimages.Changethenameofthemodelandcreateanewmodel.Whenthetrainingiscomplete,theaccuracyhasn'treallyincreasedoverthenon-augmentedimageset.Infact,theaccuracymayhavegonedownslightly.Wewerealreadyat99%soitisunlikelyweweregoingtoimproveouraccuracy.DidusinganaugmenteddatasethelpustobetterclassifyourimagesHereistheresult:

Byaugmentingourdatasetwiththeinvertedimages,wecouldidentifysixofthesevenimages.Whileourresultisnotperfect,ourslightchangetotheimagestoincreaseourdatasetsizemadeasignificantdifference.

Augmentingthedatasetimprovedourresults,butwearenotidentifyingallourtestimages.Let'strymodifyingtheLeNetnetworkdirectly.Youcancreatecustomnetworkstomodifytheexistingones,usedifferentnetworksfromexternalsources,orcreateyourown.Tomodifyanetwork,selecttheCustomizelinkontherightsideoftheNetworkdialogbox.

Atthetopoftheeditor,thereisaVisualizebutton.Pressingthisbuttonwillvisualizeallofthelayersofthemodelandhowtheyareconnected.Inthiswindow,youcanseethatthedataareinitiallyscaled,therearetwosetsofConvolutionandPoolinglayers,andtwoInnerProductswithaRectilinearUnit(ReLU)connectedtothefirstInnerProduct.Atthebottomofthenetwork,thereareoutputfunctionsthatreturntheaccuracyandlosscomputedthroughthenetwork.

Wearegoingtomaketwochangestothenetwork.First,wearegoingtoconnectaReLUtothefirstpool.Second,wearegoingtochangethevaluesofnum_outputto75forthefirstConvolution(conv1)and100forthesecondConvolution(conv2).TheReLUlayerdefinitionshouldgobelowthepool1definitionandlooklike:

TheConvolutionlayersshouldbechangedtolooklike:

layer{name:"conv1"type:"Convolution"bottom:"scaled"top:"conv1"...convolution_param{num_output:75...layer{name:"conv2"type:"Convolution"bottom:"pool1"top:"conv2"...convolution_param{num_output:100...Note,theellipis(...)justindicatesweremovedsomeofthelinesfromthelayerforbrevity.Theonlychangeyouhavetomakeistothevalueofnum_output.

Aftermakingthesechanges,visualizeyournewmodel.YoushouldseetheReLUunitappearsimilarto:

NowchangethenameofthemodelandpresstheCreatebutton.Whenitiscompletetestthedataagain.Theresultsshouldbesimilarto:

WereyouabletocorrectlyidentifythemallIfnot,whydoyouthinktheresultsweredifferent

Inourexamplehere,wewereabletoidentifymostofourtestimagessuccessfully.However,thatisgenerallynotthecase.HowwouldgoaboutimprovingourmodelfurtherTypically,hyper-parametersearchesaredonetotrydifferentvaluesofmodelparameterssuchaslearning-rateordifferentsolverstofindsettingsthatimprovemodelaccuracy.Wecouldchangethemodeltoaddlayersorchangesomeoftheparameterswithinthemodelassociatedwiththeperformanceoftheconvolutionandpoolinglayers.Inaddition,wecouldtryothernetworks.

InthistutorialyouwereintroducedtoDeepLearningandallofthestepsnecessarytoclassifyimagesincludingdataprocessing,training,testing,andimprovingyournetworkthroughdataaugmentationandnetworkmodifications.Inthetrainingphase,youlearnedabouttheparametersthatcandeterminetheperformanceoftraininganetwork.BytrainingasubsetoftheMNISTdata,afullset,differentmodels,augementeddata,etc.yousawthetypesofoptionsyouhavetocontrolperformance.Intestingourmodel,wefoundthatalthoughthetestimageswerequitedifferentthanthetrainingdata,wecouldstillcorrectlyclassifythem.

/data/101_ObjectCategoriesFeelfreetorunanypartofthislabagainwiththat(morecomplex)dataset.

Thereisstillmuchmoretolearn!StartaDeepLearningprojectortakeanothercourse.TheNvidiaDeepLearningInstitutehasacomprehensivelibraryofhands-onlabsforbothfundamentalandadvancedtopics.

THE END
1.《机器学习实战指南:CSDN经验集成》腾讯云开发者社区数据收集:在机器学习实战中,数据收集是至关重要的第一步。可以通过多种方式获取数据,例如从数据库中提取已有的结构化数据,利用API从外部数据源获取特定格式的数据,或者使用爬虫技术从网页上抓取所需的数据。数据库提供了稳定且结构化的数据来源,适合大规模数据的存储和检索。API 则允许我们与各种在线服务进行交互,获取https://cloud.tencent.com/developer/article/2478542
2.数据分析大数据数据挖掘机器学习等AI人工智能在线学位培训CDA数据分析师人才教育品牌联合美库尔、GrowingIO及数据界具备成熟项目经验的大牛名师联合打造的新型在线学习产品。旨在打造DT时代“十字型”数据精英。https://edu.cda.cn/apluscollege.html
3.人工智能机器学习培训华为人工智能工程师培训华为云帮助中心为你分享云计算行业信息,包含产品介绍、用户指南、开发指南、最佳实践和常见问题等文档,方便快速查找定位问题与能力成长,并提供相关资料和解决方案。本页面关键词:人工智能机器学习培训。https://support.huaweicloud.com/topic/1075209-1-R
4.深度学习30天系统实训机器学习常规套路视频在线视频教程计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。 https://download.csdn.net/course/detail/5466/100375
5.浅谈机器学习与计算流体力学(MLANDCFD)电子创新网Imgtec社区机器学习可以在大规模的科学文献中辅助发现与流体动力学相关的新理论、方法或应用。这对于推动学科发展具有潜在价值。 30.教育和培训: 利用机器学习技术为学生和工程师提供个性化的流体动力学教育和培训,帮助他们更好地理解和应用流体动力学知识。 31.伦理与社会影响: https://imgtec.eetrend.com/node/100577586
6.人工智能机器学习(试听课程俞老师)慧谷在线价格免费 学习有效期永久有效 目录 回放{activityStartTimeStr}正在直播中直播结束{activityLength} 免费任务1: 人工智能--机器学习 (试听章节)13:34 授课教师 开发架构实战讲师团 课程特色 视频(1)https://www.withubpt.com/course/94
7.人工智能与机器学习应用实战培训人工智能与机器学习应用实战 认证方式: 培训前了解能力模型。 培训后进行能力评测: 在线考试 能力分析,给出学习建议 合格者颁发证书,作为职业技能资格证明 近年来,随着"人工智能"深入应用到社会各个行业,通过将对应的人工智能技术比如人脸识别,车牌识别等应用到具体的行业信息化领域,包括新兴互联网企业(如电商企业、搜索http://course.uml.org.cn/course-ai/rgznyysz.asp
8.51CTO学堂51CTO学堂作为中国领先的IT职业在线教育及实战培训平台,秉承“学以致用”、 “因材施教”、“有教无类”的教育理念,提供辅导式“精品班”和自学式“视频课程”两种在线学习模式,帮助广大的IT技术人员实现技能提升、高薪就业的职业梦想。https://edu.51cto.com/joint/7.html
9.机器学习和深度学习之实战进阶加深【课程关键字】:北京机器学习培训,北京人工智能培训 我要报名 咨询电话:400-8228-121 内容背景 在国家发展的新时代,产业战略已经向创新驱动转移,从而迎接全球新一轮科技革命与产业变革的重大机遇和挑战,在这个过程中,人工智能异军突起,成为新时代的创新突破口。由于人工智能技术的领域普遍性,大批在第一线工作的技术人员http://www.mingketang.com/gkk7/049583.html
10.机器学习(深度学习)算法和应用培训课程·非监督学习模型 Unsupervised Learning ·人工神经元网络 Artificial Neural Networks 培训对象: 对机器学习算法原理和应用感兴趣,具有一定编程(Python)和数学基础(线 性代数、微积分和概率论)的管理和技术人员 学员基础:有一定的机器学习基础 培训内容: 主题 内容 机器学习概要 a) 什么是机器学习 & 与传统软件开http://www.info-soft.cn/e/action/ShowInfo.php?classid=54&id=4886
11.人工智能培训机器学习培训深度学习培训人工智能学院人工智能学院是国内最大最专业的人工智能培训机构,人工智能培训包括机器学习培训课程,深度学习培训课程,数据挖掘培训课程,人工智能学院汇集行业知名专家,人工智能行业应用领域案例分享.https://ai.pinggu.org/
12.matlab机器学习深度学习培训——北京盛世元鸿职业技能教培中心(培训授课三天、线下提前一天报到) 三、会议目标 1.掌握MATLAB基础编程及进阶提升方法。2.掌握传统机器学习方法(BP神经网络、支持向量机、决策树和随机森林等)的基本原理及其MATLAB代码实现方法。3.掌握深度学习(卷积神经网络、迁移学习、循环神经网络、长短时记忆神经网络、时间卷积网络、生成式对抗网络、YOLO目标检测算http://www.shengshiyuanhong.com.cn/nd.jsp?id=124
13.让人工智能培训帮助你开辟新天地在现实中,许多职场人士通过AI培训实现了职业上的飞跃。比如,一位来自市场营销的从业者,在参加了数据分析和机器学习的培训后,成功转型为一家大数据公司的数据科学家,并负责公司客户分析和预测工作。此外,还有从事传统制造业的人,通过深度学习课程进入了自动化生产领域,从而走上了技术转型之路。 https://maimai.cn/article/detail?fid=1853199430&efid=_WKNwUegUbnhk6WV5cgCJg
14.MATLAB与机器学习培训课程成都常州济南长沙武汉重庆项目外包开发MATLAB与机器学习培训课程 MATLAB与机器学习培训课程 班级规模及环境--热线:4008699035 手机:15921673576/13918613812( 微信同号) 坚持小班授课,为保证培训效果,增加互动环节,每期人数限3到5人。 上课时间和地点 上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线http://q.51qianru.cn/peixun/matlab_z.htm
15.机器学习(ML)和人工智能(AI)—AWS数字和课堂培训探索AI/机器学习培训 刚刚接触 AI/机器学习? 培养对 AI/机器学习的整体认知,以便与时俱进,并形成业务见解。 生成式人工智能 任何人都可以使用生成式人工智能进行构建,而 AWS 就是学习如何构建的地方。 探索生成式人工智能培训 为获得行业认可的凭证做准备 http://aws.amazon.com/cn/training/learning-paths/machine-learning/
16.金属材料机器学习+晶体塑性计算模拟专题培训为了帮助学员掌握金属材料计算模拟方法,材料人网在东莞松山湖举办金属材料机器学习+晶体塑性计算模拟专题培训。线下培训,同步线上直播 培训时间 2024年5月11-12日金属材料机器学习专题培训 2024年5月13日,晶体塑性计算模拟专题培训 课程安排 金属材料机器学习专题培训 https://www.cailiaoren.com/m_hd_78.html
17.成都机器学习人工智能零基础培训地址电话随着机器学习和人工智能技术的不断发展,人们对这方面的需求和关注也在逐步增加。成都机器学习人工智能零基础培训应运而生,旨在满足学员掌握这方面知识的需求,提高其竞争力和就业能力。 课程特色 1.零基础学习:课程从基础知识开始,深入浅出,让学员由浅入深地掌握机器学习和人工智能的知识。 https://www.qinxue365.com/new/741217.html
18.人工智能与机器学习应用实战培训课程如果您想学习本课程,请预约报名 如果没找到合适的课程或有特殊培训需求,请订制培训 除培训外,同时提供相关技术咨询与技术支持服务,有需求请发需求表到邮箱soft@info-soft.cn,或致电4007991916 技术服务需求表下载请点击 服务优势: 丰富专家资源,精准匹配相关行业,相关项目技术精英,面向用户实际需求,针对性培训或咨询,http://www.zksoft.org/e/action/ShowInfo.php?classid=351&id=5295
19.使用CLI和SDK(v2)管理Azure机器学习环境使用环境进行模型部署 Azure CLI Python SDK 还可以将环境用于模型部署,以进行联机评分和批量评分。 为此,请在部署 YAML 配置中指定environment字段。 有关如何在部署中使用环境的详细信息,请参阅使用联机终结点部署机器学习模型并为其评分。 后续步骤 培训https://docs.microsoft.com/zh-cn/azure/machine-learning/how-to-use-environments
20.数字化培训在线学习云技能亚马逊云科技查找免费的亚马逊云科技数字化培训,以学习受欢迎的云技能,提升您的职业生涯。无论您是在探索新想法、提高您的云技能、学习服务,还是准备认证,我们都有培训来帮助您不断学习新技能并实现您的目标。https://www.amazonaws.cn/training/digital/
21.[技能培训班](初级)机器学习平台研发工程师中大网校人工智能课程中心提供人工智能辅导课程,[技能培训班](初级)机器学习平台研发工程师课程培训、高通过率人工智能培训班.http://ke.wangxiao.cn/singledetail/120336?sign=rgzn