要使用索引对数据库的数据操作进行优化,那必须明确几个问题:1.什么是索引2.索引的原理3.索引的优缺点4.什么时候需要使用索引,如何使用围绕这几个问题,来探究索引在数据库操作中所起到的作用。
1.数据库索引简介
大致的分裂步骤如下:1)创建两个儿子节点2)将原节点中的数据近似分为两半,写入两个新的孩子节点中。3)在跟节点中放置指向页节点的指针当你不断向表中插入数据,根节点中指向叶节点的指针也被插满,当叶子还需要分裂的时候,根节点没有空间再创建指向新的叶节点的指针。那么数据库就会创建分支节点。随着叶子节点的分裂,根节点中的指针都指向了这些分支节点。随着数据的不断插入,索引会增加更多的分支节点,使树结构变成这样的一个多级结构。
3.索引的种类
1)聚集索引:表中行的物理顺序与键值的逻辑(索引)顺序相同。因为数据的物理顺序只能有一种,所以一张表只能有一个聚集索引。如果一张表没有聚集索引,那么这张表就没有顺序的概念,所有的新行都会插入到表的末尾。对于聚集索引,叶节点即存储了数据行,不再有单独的数据页。就比如说我小时候查字典从来不看目录,我觉得字典本身就是一个目录,比如查裴字,只需要翻到p字母开头的,再按顺序找到e。通过这个方法我每次都能最快的查到老师说的那个字,得到老师的表扬。
2)非聚集索引:表中行的物理顺序与索引顺序无关。对于非聚集索引,叶节点存储了索引字段值以及指向相应数据页的指针。叶节点紧邻在数据之上,对数据页的每一行都有相应的索引行与之对应。有时候查字典,我并不知道这个字读什么,那我就不得不通过字典目录的“部首”来查找了。这时候我会发现,目录中的排序和实际正文的排序是不一样的,这对我来说很苦恼,因为我不能比别人快了,我需要先再目录中找到这个字,再根据页数去找到正文中的字。
4.索引与数据的查询,插入与删除
1)查询。查询操作就和查字典是一样的。当我们去查找指定记录时,数据库会先查找根节点,将待查数据与根节点的数据进行比较,再通过根节点的指针查询下一个记录,直到找到这个记录。这是一个简单的平衡树的二分搜索的过程,我就不赘述了。在聚集索引中,找到页节点即找到了数据行,而在非聚集索引中,我们还需要再去读取数据页。
2)插入。聚集索引的插入操作比较复杂,最简单的情况,插入操作会找到对于的数据页,然后为新数据腾出空间,执行插入操作。如果该数据页已经没有空间,那就需要拆分数据页,这是一个非常耗费资源的操作。对于仅有非聚集索引的表,插入只需在表的末尾插入即可。如果也包含了聚集索引,那么也会执行聚集索引需要的插入操作。
3)删除。删除行后下方的数据会向上移动以填补空缺。如果删除的数据是该数据页的最后一行,那么这个数据页会被回收,它的前后一页的指针会被改变,被回收的数据页也会在特定的情况被重新使用。与此同时,对于聚集索引,如果索引页只剩一条记录,那么该记录可能会移动到邻近的索引表中,原来的索引页也会被回收。而非聚集索引没办法做到这一点,这就会导致出现多个数据页都只有少量数据的情况。
5.索引的优缺点其实通过前面的介绍,索引的优缺点已经一目了然。先说优点:1)大大加快数据的检索速度,这也是创建索引的最主要的原因2)加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
3)当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,降低了数据的维护速度,这个是比较大的问题。
6.索引的使用根据上文的分析,我们大致对什么时候使用索引有了自己的想法(如果你没有,回头再看一遍。。。)。一般我们需要在这些列上建立索引:1)在经常需要搜索的列上,这是毋庸置疑的;2)经常同时对多列进行查询,且每列都含有重复值可以建立组合索引,组合索引尽量要使常用查询形成索引覆盖(查询中包含的所需字段皆包含于一个索引中,我们只需要搜索索引页即可完成查询)。同时,该组合索引的前导列一定要是使用最频繁的列。对于前导列的问题,在后面sqlite的索引使用介绍中还会做讨论。3)在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度,连接条件要充分考虑带有索引的表。;
4)在经常需要对范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的,同样,在经常需要排序的列上最好也创建索引。
6)在经常放到where子句中的列上面创建索引,加快条件的判断速度。要注意的是where字句中对列的任何操作(如计算表达式,函数)都需要对表进行整表搜索,而没有使用该列的索引。所以查询时尽量把操作移到等号右边。
对于以下的列我们不应该创建索引:1)很少在查询中使用的列2)含有很少非重复数据值的列,比如只有0,1,这时候扫描整表通常会更有效3)对于定义为TEXT,IMAGE的数据不应该创建索引。这些字段长度不固定,或许很长,或许为空。当然,对于更新操作远大于查询操作时,不建立索引。也可以考虑在大规模的更新操作前drop索引,之后重新创建,不过这就需要把创建索引对资源的消耗考虑在内。总之,使用索引需要平衡投入与产出,找到一个产出最好的点。
7.在sqlite中使用索引
2)很多对索引不熟悉的朋友在表中创建了索引,却发现没有生效,其实这大多数和我接下来讲的有关。对于where子句中出现的列要想索引生效,会有一些限制,这就和前导列有关。所谓前导列,就是在创建复合索引语句的第一列或者连续的多列。比如通过:CREATEINDEXcomp_indONtable1(x,y,z)创建索引,那么x,xy,xyz都是前导列,而yz,y,z这样的就不是。下面讲的这些,对于其他数据库或许会有一些小的差别,这里以sqlite为标准。在where子句中,前导列必须使用等于或者in操作,最右边的列可以使用不等式,这样索引才可以完全生效。同时,where子句中的列不需要全建立了索引,但是必须保证建立索引的列之间没有间隙。举几个例子来看吧:
用如下语句创建索引:CREATEINDEXidx_ex1ONex1(a,b,c,d,e,...,y,z);这里是一个查询语句:...WHEREa=5ANDbIN(1,2,3)ANDcISNULLANDd='hello'这显然对于abcd四列都是有效的,因为只有等于和in操作,并且是前导列。再看一个查询语句:...WHEREa=5ANDbIN(1,2,3)ANDc>12ANDd='hello'那这里只有a,b和c的索引会是有效的,d列的索引会失效,因为它在c列的右边,而c列使用了不等式,根据使用不等式的限制,c列已经属于最右边。最后再看一条:...WHEREbIN(1,2,3)ANDcNOTNULLANDd='hello'
索引将不会被使用,因为没有使用前导列,这个查询会是一个全表查询。
其实除了索引,对查询性能的影响因素还有很多,比如表的连接,是否排序等。影响数据库操作的整体性能就需要考虑更多因素,使用更对的技巧,不得不说这是一个很大的学问。
最后在android上使用sqlite写一个简单的例子,看下索引对数据库操作的影响。创建如下表和索引:db.execSQL("createtableifnotexistst1(a,b)");db.execSQL("createindexifnotexistsiaont1(a,b)");插入10万条数据,分别对表进行如下操作:select*fromt1wherea='90012'插入:insertintot1(a,b)values('10008','name1.6982235534984673')更新:updatet1setb='name1.999999'wherea='887'
删除:deletefromt1wherea='1010'
数据如下(5次不同的操作取平均值):操作无索引有索引查询170ms5ms插入65ms75ms更新240ms52ms删除234ms78ms
可以看到显著提升了查询的速度,稍稍减慢了插入速度,还稍稍提升了更新数据和删除数据的速度。如果把更新和删除中的where子句中的列换成b,速度就和没有索引一样了,因为索引失效。所以索引能大幅度提升查询速度,对于删除和更新操作,如果where子句中的列使用了索引,即使需要重新build索引,有可能速度还是比不使用索引要快的。对与插入操作,索引显然是个负担。同时,索引让db的大小增加了2倍多。