通关机器学习,必须掌握的32种算法Tsingke

1.A*搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

2.集束搜索(又名定向搜索,BeamSearch)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

3.二分查找(BinarySearch)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

4.分支界定算法(BranchandBound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

5.Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

7.Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

8.Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

9.离散微分算法(Discretedifferentiation)。

10.动态规划算法(DynamicProgramming)——展示互相覆盖的子问题和最优子架构算法

11.欧几里得算法(Euclideanalgorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。

12.期望-最大算法(Expectation-maximizationalgorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。

13.快速傅里叶变换(FastFouriertransform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。

14.梯度下降(Gradientdescent)——一种数学上的最优化算法。

15.哈希算法(Hashing)。

16.堆排序(Heaps)。

17.Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。

18.LLL算法(Lenstra-Lenstra-Lovaszlatticereduction)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。

19.最大流量算法(Maximumflow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flowmin-cuttheorem)。Ford-Fulkerson能找到一个流网络中的最大流。

20.合并排序(MergeSort)。

21.牛顿法(Newton'smethod)——求非线性方程(组)零点的一种重要的迭代法。

22.Q-learning学习算法——这是一种通过学习动作值函数(action-valuefunction)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。

23.两次筛法(QuadraticSieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法NumberFieldSieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。

24.RANSAC——是“RANdomSAmpleConsensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。

25.RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。

26.Schnhage-Strassen算法——在数学中,Schnhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(Nlog(N)log(log(N))),该算法使用了傅里叶变换。

27.单纯型算法(SimplexAlgorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。

28.奇异值分解(Singularvaluedecomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdeterminedlinearsystems)、矩阵逼近、数值天气预报等等。

29.求解线性方程组(Solvingasystemoflinearequations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordanelimination),或是柯列斯基分解(Choleskydecomposition)。

30.Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域(homogenousregion),看看它是否属于边缘,还是是一个顶点。

31.合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:

32.维特比算法(Viterbialgorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。

THE END
1.必知!人工智能10大热门算法!人工智能算法有哪些模型原理:逻辑回归是一种机器学习算法,专为解决二分类问题而设计。该算法能够将连续的输入变量映射到离散的输出结果,通常以二进制形式表示。通过应用逻辑函数,逻辑回归将线性回归的预测结果转换到(0,1)的范围内,从而生成分类的概率。 模型训练:逻辑回归模型的训练依赖于已知分类的样本数据。在训练过程中,通过优化模型的https://blog.csdn.net/m0_74914256/article/details/141901236
2.编程35种算法汇总编程35种算法是编程世界的核心,它们可以解决各种问题。从搜索和排序到图算法和动态规划,每种算法都有其独特的应用场景。通过掌握这些算法,您将能够更好地理解编程世界的奥秘,并且能够更高效地解决问题。无论您是新手还是有经验的程序员,学习和掌握这些算法都是必不可少的。希望本文对您有所帮助,并能够激发您在https://baijiahao.baidu.com/s?id=1781330184170815567&wfr=spider&for=pc
3.智能降管理——开启降领域新时代瞪羚云长城战略咨询目前美国有70%的人享有健康管理服务,而中国享有这项服务的人不足0.1%,随着中国经济不断提高,对健康管理需求将扩大。 ③国家政策支持及行业规划出台 表2-1国家部分相关政策、战略及行业报告列表 ④人工智能技术的大力提升 以深度卷积神经网络为核心的深度学习算法,加速了人工智能技术发展,带动了健康管理领域与其的跨界https://www.chinagazelle.cn/news/detail/45e80a28ed074d97b8a56b4ffba42e6d
4.性能提升成本降低,这是分布式强化学习算法最新研究进展分布式强化学习是一个综合的研究子领域,需要深度强化学习算法以及分布式系统设计的互相感知和协同。考虑到 DDRL 的巨大进步,我们梳理形成了 DDRL 技术的展历程、挑战和机遇的系列文章。我们在 part 1 部分回顾了经典的 DDRL 框架,在本部分,我们利用三篇论文,具体分析 DDRL 的今生 --- 最新研究进展。 https://www.thepaper.cn/newsDetail_forward_26353658
5.太全了!自学机器学习算法学习路线图,有配套视频+实战项目,完全自学机器学习需要学习以下几个主要方面的内容: 一、数学基础线性代数: 【1】理解向量、矩阵的基本运算,如加法、减法、乘法等。 【2】掌握矩阵的特征值与特征向量的概念及计算方法,这在主成分分析等算法中非常关键。 【3】熟悉线性方程组的求解,对于理解线性回归等算法的原理有重要作用。 https://www.bilibili.com/read/cv37461164
6.科学网—[转载]联邦学习算法综述摘要:近年来,联邦学习作为解决数据孤岛问题的技术被广泛关注,已经开始被应用于金融、医疗健康以及智慧城市等领域。从3个层面系统阐述联邦学习算法。首先通过联邦学习的定义、架构、分类以及与传统分布式学习的对比来阐述联邦学习的概念;然后基于机器学习和深度学习对目前各类联邦学习算法进行分类比较和深入分析;最后分别从通信https://blog.sciencenet.cn/blog-3472670-1280769.html
7.学习,是治愈焦虑的良药只有不断学习、奔跑、更新自己的知识体系,外界发生的变化才不足以影响我们。 相反,如果我们在焦虑的时期选择躺平、摆烂,却不去学习,还抱怨不休,那么我们就会陷入双重困境,无法自拔。 二、建立一套有意识的学习算法 1.人的学习风格天然存在差异 我曾采访过很多人,包括小朋友,发现每个人的学习方法都不一样。在课堂上https://36kr.com/p/2375197738412036
8.你应该知道的十种机器学习算法机器学习/人工智能领域在将来是越来越受欢迎。由于大数据是目前科技行业最热门的趋势,机器学习非常强大,可以根据大量数据做出预测或计算建议。使用大量数据训练的深度学习算法,构建出一个能够理解人类语言并自动生成语言的模型。ChatGPT、文心一言等等,都是机器学习的伟大产物。 https://www.51cto.com/article/771973.html
9.强化学习(Qfuncation,DQN)基本介绍目前强化学习的算法 基本算法分类 强化学习的算法基本上都包含了价值函数。一种价值函数是关于状态的价值函数 ,用来评判agent所处状态的好坏;另一种价值函数是关于状态-动作的价值函数 ,用来评判当前状态s下所采取的行动a的好坏。 关于model-free 和 model-based的区别(个人觉得这位网友的评论比较容易理解): https://www.jianshu.com/p/230bae5ca3d1
10.目标跟踪入门——目标跟踪算法综述电子创新网Imgtec社区深度学习不需要自己设计特征,它可以自己在数据中学习到目标的特征,同时也有自己的分类器,也就是说将寻找特征和分类结合在一起。深度学习的效果也是非常的好,在最近的图像比赛中,冠军都是使用深度学习来实现的。目前的深度学习算法包括R-CNN,Fast R-CNN,Faster R-CNN等深度分类方法,也包括 YOLO(you only look oncehttps://imgtec.eetrend.com/blog/2019/100017436.html
11.深度学习高手笔记卷1:基础算法京东集团副总裁,京东零售技术委员会数据算法通道会长 前言 目前人工智能(artificial intelligence,AI)在计算机界非常火热,而其中深度学习(deep learning,DL)无疑是更为火热的一个领域,它在计算机视觉、自然语言处理、语音识别、跨模态分析、风控建模等领域均取得了突破性的进展。而且近年来该领域的优秀论文、落地项目也层https://www.epubit.com/bookDetails?id=UB7d8623610d375
12.强化学习系列案例强化学习实验环境Gym和TensorFlow强化学习系列案例 | 强化学习实验环境Gym和TensorFlow 查看本案例完整的数据、代码和报告请登录数据酷客(cookdata.cn)案例板块。 强化学习算法的实现需要合适的平台和工具。本案例将首先介绍目前常用的强化学习实现平台Gym的基本使用方法,再介绍实验工具TensorFlow的基本操作方法,为之后构建和评估强大的强化学习算法打下坚实https://cloud.tencent.com/developer/article/1619441
13.《集异璧之大成》阅读笔记及杂谈(附录一):人机博弈当然在游戏的算法当中使用的不仅仅是蒙特卡洛算法,其它还有很多——不同算法对应不同问题,构建一个足够复杂的,更高可玩性的,更贴近现实的游戏数据系统。蒙特卡洛算法也常用于机器学习,特别是强化学习的算法中。一般情况下,针对得到的样本数据集创建相对模糊的模型,通过蒙特卡洛方法对于模型中的参数进行选取,使之于原始数https://www.gameres.com/846786.html
14.算法数据结构体系学习班马士兵教育官网注意原“算法与数据结构基础班”已经过期。所有内容都被现在的“算法数据结构体系学习班”重新讲述,还增加了内容,增加了题目练习。原“算法与数据结构基础班”的所有内容,对应现在的“算法数据结构体系学习班”的1-23节。 注意原“算法与数据结构进阶班”已经过期。所有内容已经被现在的“算法数据结构体系学习班”和“https://www.mashibing.com/course/339
15.统计学习方法(豆瓣)—— 引自章节:第一篇 监督学习 算法2.2 (感知机学习算法的对偶形式) (3) 如果 y_i(\sum_{j=1}^N \alpha_j y_j x_j \dot x_i+b) \le 0, \alpha_i \leftarrow \alpha_i+\eta b \leftarrow b + \eta y_i (查看原文) https://book.douban.com/subject/10590856/
16.年,寻找反向传播的生物机制神经元生物大脑传播算法Richards 团队的最新研究表明,「我们目前已经达到这样的水平: 通过相当真实的神经元模拟,我们可以训练锥体神经元网络来完成各种任务,」Richards表示。「然后使用这些模型的稍微抽象的版本,我们可以利用锥体神经元网络,来学习人们在机器学习中所做的那种困难的任务。」 https://www.cn-healthcare.com/articlewm/20210225/content-1192821.html