2022Top10自监督学习模型发布!美中两国八项成果霸榜人工智能

自监督学习使计算机能够观察世界,通过学习图像、语音或文本的结构来了解世界。这推动了人工智能最近的许多重大进展。

尽管世界科研人员在该领域投入大量精力,但目前自我监督学习算法从图像、语音、文本和其他模式中学习的方式存在很大差异。因此,人工智能论坛AnalyticsIndiaMagazine推出2022年十大自监督学习模型,以飨读者。

它不使用对比学习或依赖于输入示例的重建。MetaAI团队表示,data2vec的训练方式是通过提供输入数据的部分视图来进行预测模型表示。

该团队表示:「我们首先在学生模型中对掩码的训练样本编码。之后,在相同模型中,对未掩码的输入样本编码,从而构建训练目标。这个模型(教师模型)和学生模型只有参数上的不同。」

该模型根据掩码的训练样本,预测未掩码训练样本的模型表示形式。这消除了学习任务中对特定于模态的目标的依赖。

ConvNext也叫ConvNetmodelforthe2020s,是MetaAI团队于三月发布的一款模型。它完全基于ConvNet的模块,因此准确、设计简单且可扩展。

VICReg不需要诸如分支之间的权重共享、批量标准化、特征标准化、输出量化、停止梯度、memorybanks等技术,并在几个下游任务上达到的结果与最先进水平相当。此外,通过实验可证明,方差正则化项可以稳定其他方法的训练,并促进性能的提高。

麻省理工学院的计算机科学与人工智能实验室与微软和康奈尔大学合作开发了基于能量的图形优化的自我监督转换器(STEGO),解决计算机视觉中最困难的任务之一:在没有人工监督的情况下为图像的每一个像素分配标签。

STEGO学习了「语义分割」——简单来说,就是为图像中的每个像素分配标签。

语义分割是当今计算机视觉系统的一项重要技能,因为图像可能会受到对象物体的干扰。更难的是,这些对象并不总是适合文字框。相比于植被、天空和土豆泥这样难以量化的东西,算法往往更适用于离散的「事物」,比如人和汽车。

以狗在公园里玩耍的场景为例,以前的系统可能只能识别出狗,但是通过为图像的每个像素分配一个标签,STEGO可以将图像分解为若干主要成分:狗、天空、草和它的主人。

可以「观察世界」的机器对于自动驾驶汽车和医疗诊断预测模型等各种新兴技术至关重要。由于STEGO可以在没有标签的情况下学习,它可以检测不同领域的对象,甚至是人类尚未完全理解的对象。

对于自我监督语音表示学习,香港中文大学(深圳)的研究人员提出了CodeBERT(CoBERT)。与其他自蒸馏方法不同,他们的模型预测来自不同模态的表征。该模型将语音转换为一系列离散代码,用于表示学习。

首先,该研究团队使用HuBERT预训练代码模型在离散空间中进行训练。然后,他们将代码模型提炼成语音模型,旨在跨模态执行更好的学习。ST任务的显著改进表明,与以前的工作相比,CoBERT的表示可能携带更多的语言信息。

CoBERT在ASR任务上的表现优于目前最佳算法的性能,并在SUPERB语音翻译(ST)任务中带来重大改进。

FedX是微软和清华大学、韩国科学技术院合作推出的无监督联邦学习框架。通过局部和全局知识提炼和对比学习,该算法从离散和异构的本地数据中无偏表示学习。此外,它是一种适应性强的算法,可用作联合学习情境中各种现有自监督算法的附加模块。

日本北海道大学提出了TriBYOL,用于小批量的自监督表示学习。该模型下,研究人员不需要大批量的计算资源来学习良好的表示。这模型为三元组网络结构,结合了三视图损失,从而在多个数据集上提高了效率并优于几种自监督算法。

诺基亚贝尔实验室的研究人员与佐治亚理工学院和剑桥大学合作开发了ColloSSL,这是一种用于人类活动识别的协作自我监督算法。

多个设备同时捕获的未标记传感器数据集可以被视为彼此的自然转换,然后生成用于表示学习的信号。本文提出了三种方法——设备选择、对比采样和多视图对比损失。

成均馆大学研究团队提出了一个简易的自监督辅助任务,该任务预测具有三个属性的可定位旋转(LoRot)以辅助监督目标。

该模型具有三大特点。第一,研究团队引导模型学习丰富的特征。第二,分布式培训在自监督转变的同时不会发生明显变化。第三,该模型轻量通用,对以前的技术具有很高的适配性。

2022年,自监督学习和强化学习这两个领域都有巨大的创新。虽然研究人员一直在争论哪个更重要,但就像自监督学习大佬YannLeCun说的那样:「强化学习就像蛋糕上的樱桃,监督学习是蛋糕上的糖衣,而自监督学习就是蛋糕本身。」

THE END
1.必知!人工智能10大热门算法!人工智能算法有哪些模型原理:逻辑回归是一种机器学习算法,专为解决二分类问题而设计。该算法能够将连续的输入变量映射到离散的输出结果,通常以二进制形式表示。通过应用逻辑函数,逻辑回归将线性回归的预测结果转换到(0,1)的范围内,从而生成分类的概率。 模型训练:逻辑回归模型的训练依赖于已知分类的样本数据。在训练过程中,通过优化模型的https://blog.csdn.net/m0_74914256/article/details/141901236
2.编程35种算法汇总编程35种算法是编程世界的核心,它们可以解决各种问题。从搜索和排序到图算法和动态规划,每种算法都有其独特的应用场景。通过掌握这些算法,您将能够更好地理解编程世界的奥秘,并且能够更高效地解决问题。无论您是新手还是有经验的程序员,学习和掌握这些算法都是必不可少的。希望本文对您有所帮助,并能够激发您在https://baijiahao.baidu.com/s?id=1781330184170815567&wfr=spider&for=pc
3.智能降管理——开启降领域新时代瞪羚云长城战略咨询目前美国有70%的人享有健康管理服务,而中国享有这项服务的人不足0.1%,随着中国经济不断提高,对健康管理需求将扩大。 ③国家政策支持及行业规划出台 表2-1国家部分相关政策、战略及行业报告列表 ④人工智能技术的大力提升 以深度卷积神经网络为核心的深度学习算法,加速了人工智能技术发展,带动了健康管理领域与其的跨界https://www.chinagazelle.cn/news/detail/45e80a28ed074d97b8a56b4ffba42e6d
4.性能提升成本降低,这是分布式强化学习算法最新研究进展分布式强化学习是一个综合的研究子领域,需要深度强化学习算法以及分布式系统设计的互相感知和协同。考虑到 DDRL 的巨大进步,我们梳理形成了 DDRL 技术的展历程、挑战和机遇的系列文章。我们在 part 1 部分回顾了经典的 DDRL 框架,在本部分,我们利用三篇论文,具体分析 DDRL 的今生 --- 最新研究进展。 https://www.thepaper.cn/newsDetail_forward_26353658
5.太全了!自学机器学习算法学习路线图,有配套视频+实战项目,完全自学机器学习需要学习以下几个主要方面的内容: 一、数学基础线性代数: 【1】理解向量、矩阵的基本运算,如加法、减法、乘法等。 【2】掌握矩阵的特征值与特征向量的概念及计算方法,这在主成分分析等算法中非常关键。 【3】熟悉线性方程组的求解,对于理解线性回归等算法的原理有重要作用。 https://www.bilibili.com/read/cv37461164
6.科学网—[转载]联邦学习算法综述摘要:近年来,联邦学习作为解决数据孤岛问题的技术被广泛关注,已经开始被应用于金融、医疗健康以及智慧城市等领域。从3个层面系统阐述联邦学习算法。首先通过联邦学习的定义、架构、分类以及与传统分布式学习的对比来阐述联邦学习的概念;然后基于机器学习和深度学习对目前各类联邦学习算法进行分类比较和深入分析;最后分别从通信https://blog.sciencenet.cn/blog-3472670-1280769.html
7.学习,是治愈焦虑的良药只有不断学习、奔跑、更新自己的知识体系,外界发生的变化才不足以影响我们。 相反,如果我们在焦虑的时期选择躺平、摆烂,却不去学习,还抱怨不休,那么我们就会陷入双重困境,无法自拔。 二、建立一套有意识的学习算法 1.人的学习风格天然存在差异 我曾采访过很多人,包括小朋友,发现每个人的学习方法都不一样。在课堂上https://36kr.com/p/2375197738412036
8.你应该知道的十种机器学习算法机器学习/人工智能领域在将来是越来越受欢迎。由于大数据是目前科技行业最热门的趋势,机器学习非常强大,可以根据大量数据做出预测或计算建议。使用大量数据训练的深度学习算法,构建出一个能够理解人类语言并自动生成语言的模型。ChatGPT、文心一言等等,都是机器学习的伟大产物。 https://www.51cto.com/article/771973.html
9.强化学习(Qfuncation,DQN)基本介绍目前强化学习的算法 基本算法分类 强化学习的算法基本上都包含了价值函数。一种价值函数是关于状态的价值函数 ,用来评判agent所处状态的好坏;另一种价值函数是关于状态-动作的价值函数 ,用来评判当前状态s下所采取的行动a的好坏。 关于model-free 和 model-based的区别(个人觉得这位网友的评论比较容易理解): https://www.jianshu.com/p/230bae5ca3d1
10.目标跟踪入门——目标跟踪算法综述电子创新网Imgtec社区深度学习不需要自己设计特征,它可以自己在数据中学习到目标的特征,同时也有自己的分类器,也就是说将寻找特征和分类结合在一起。深度学习的效果也是非常的好,在最近的图像比赛中,冠军都是使用深度学习来实现的。目前的深度学习算法包括R-CNN,Fast R-CNN,Faster R-CNN等深度分类方法,也包括 YOLO(you only look oncehttps://imgtec.eetrend.com/blog/2019/100017436.html
11.深度学习高手笔记卷1:基础算法京东集团副总裁,京东零售技术委员会数据算法通道会长 前言 目前人工智能(artificial intelligence,AI)在计算机界非常火热,而其中深度学习(deep learning,DL)无疑是更为火热的一个领域,它在计算机视觉、自然语言处理、语音识别、跨模态分析、风控建模等领域均取得了突破性的进展。而且近年来该领域的优秀论文、落地项目也层https://www.epubit.com/bookDetails?id=UB7d8623610d375
12.强化学习系列案例强化学习实验环境Gym和TensorFlow强化学习系列案例 | 强化学习实验环境Gym和TensorFlow 查看本案例完整的数据、代码和报告请登录数据酷客(cookdata.cn)案例板块。 强化学习算法的实现需要合适的平台和工具。本案例将首先介绍目前常用的强化学习实现平台Gym的基本使用方法,再介绍实验工具TensorFlow的基本操作方法,为之后构建和评估强大的强化学习算法打下坚实https://cloud.tencent.com/developer/article/1619441
13.《集异璧之大成》阅读笔记及杂谈(附录一):人机博弈当然在游戏的算法当中使用的不仅仅是蒙特卡洛算法,其它还有很多——不同算法对应不同问题,构建一个足够复杂的,更高可玩性的,更贴近现实的游戏数据系统。蒙特卡洛算法也常用于机器学习,特别是强化学习的算法中。一般情况下,针对得到的样本数据集创建相对模糊的模型,通过蒙特卡洛方法对于模型中的参数进行选取,使之于原始数https://www.gameres.com/846786.html
14.算法数据结构体系学习班马士兵教育官网注意原“算法与数据结构基础班”已经过期。所有内容都被现在的“算法数据结构体系学习班”重新讲述,还增加了内容,增加了题目练习。原“算法与数据结构基础班”的所有内容,对应现在的“算法数据结构体系学习班”的1-23节。 注意原“算法与数据结构进阶班”已经过期。所有内容已经被现在的“算法数据结构体系学习班”和“https://www.mashibing.com/course/339
15.统计学习方法(豆瓣)—— 引自章节:第一篇 监督学习 算法2.2 (感知机学习算法的对偶形式) (3) 如果 y_i(\sum_{j=1}^N \alpha_j y_j x_j \dot x_i+b) \le 0, \alpha_i \leftarrow \alpha_i+\eta b \leftarrow b + \eta y_i (查看原文) https://book.douban.com/subject/10590856/
16.年,寻找反向传播的生物机制神经元生物大脑传播算法Richards 团队的最新研究表明,「我们目前已经达到这样的水平: 通过相当真实的神经元模拟,我们可以训练锥体神经元网络来完成各种任务,」Richards表示。「然后使用这些模型的稍微抽象的版本,我们可以利用锥体神经元网络,来学习人们在机器学习中所做的那种困难的任务。」 https://www.cn-healthcare.com/articlewm/20210225/content-1192821.html