摘要:气相色谱-质谱联用技术(GC-MS)检测灵敏度高,分离效果好,是检测有机物最常选用的方法。本文综述了GC-MS联用技术的原理及其在医药、环境、生物等方面的应用。
关键词:GC-MS;原理;应用
1概述
GC-MS始于20世纪50年代后期,1965年出现商品仪器,1968年实现与计算机联用。经过几十年的发展,目前,各种联用技术中,最成熟和最完善的当属GS-MS。其发展过程分为4个阶段:解决接口和磁场快扫描问题,以填充柱色谱与磁质谱联用成功为标志;解决联用仪计算机数据处理问题,以填充柱色谱-四极质谱-计算机三机联用成功为标志;小型台式GC-MS联用,计算机开始控制联用仪主机,实现了毛细管柱GC-MS并开始了GC-MS-MS(气象色谱与磁式或四极串联质谱MS-MS的联用);主机一体化全自动GC-MS系统和小型台式GC-MS-MS的问世。
2GC-MS的原理和组成
GC-MS利用气相色谱作为质谱的进样系统,使复杂的化学组会得到分离;利用质谱仪作为检测器进行定性和定量的分析,主要是用
于定性定量分析沸点较低、热稳定性好的化合物。
2.1GC-MS的原理
2.1.1GC的原理[1-3]
由于流动相、固定相以及溶质混合物性质(沸点、极性及吸附性质等)的不同,在色谱过程中溶质混合物中的各组分表现出不同的色谱行为,从而使各组分彼此相互分离。
当一种不与被分析物质发生化学反应的被称为载气的永久性气
体(例如H
2、N
2
、He、Ar、CO
等)携带样品中各组分通过装有
固定相的色谱柱时,由于试样分子与固定相分子间发生吸附、溶解、结合或离子交换,使试样分子随载气在两相之间反复多次分配,使那些分配系数只有微小差别的组分发生很大的分离效果,从而使不同组分得到完全分离。
2.1.2MS的原理[1-3]
质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度,
将它们分别聚焦而得到,从而确定其质量。
2.2GC-MS的组成
气相色谱仪[2,3]包括气路系统,进样系统,分离系统,温度控制系统以及检测和记录系统。
质谱仪[2,3]包括真空系统,进样系统,离子源,质量分析器,离子检测器和计算机自动控制及数据处理系统。
GC-MS联用仪[2,3]包括气相色谱仪,接口,离子源,质量分析器,检测器,仪器控制和数据处理系统。
图1GC-MS的组成
3GC-MS分析条件的选择[4-6,9]
a.扫描范围:取决于化合物的分子量,应该使化合物所有的离子都出现在设定的扫描范围之内。
c.灯丝电流:一般设置在0.20~0.25mA。灯丝电流小,仪器灵敏度太低;电流太大,则会降低灯丝寿命。
d.电子能量:电子能量一般为70eV,标准质谱图都是在70eV下得到的。
e.光电倍增器电压:与灵敏度有直接关系。在仪器灵敏度能够满足要求的情况下,应使用较低的光电倍增器电压,以保护倍增器,延长其使用寿命。
4GC-MS的优点和常用测定方法
4.1GC-MS的优点
色谱法高效分离和定量分析简便,质谱分析具有灵敏度高,定性能力强。可以检测出几乎全部的化合物,准确测定分子质量,确定化合物的化学式和分子结构,并且灵敏度极高。
GC-MS联用仪和气相色谱仪相比的优点[6,8]:(1)其定性参数增加,定性可靠;(2)它是一种高灵敏度的通用型检测器;(3)可同时对多种化合物进行测量而不受基质干扰;(4)定量精度较高;(5)日常维护方便。
4.2GC-MS常用测定方法[7,9]
(1)总离子流色谱法(totalionizationchromatography,TIC)——类似于GC图谱,用于定量。
(2)反复扫描法(repetitivescanningmethod,RSM)——
5GC-MS联用中的主要技术问题
气相色谱仪和质谱仪联用技术中着重要解决两个技术问题:
(1)仪器接口[10-11]
接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气尽可能多的除去,同时保留和浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。