真空电容范文

导语:如何才能写好一篇真空电容,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

中图分类号:C35文献标识码:A

引言

从电网运行情况看,因开关重燃故障引发的电容器损坏等事故也时有发生。浙江电网均采用经过老炼试验后的真空断路器,多年来未发生由于真空断路器重燃引起的重大事故。国家电网公司在新的十八项重大反措里明确要求高压大电流的老炼试验,应引起重视。

一、真空灭弧室的老炼机理

所谓老炼,就是通过一定的工艺处理,消除灭弧室内部的毛刺、金属和非金属微粒及各种污秽物,改善触头的表面状况,使真空间隙耐电强度大幅提高;还可改变触头表面的晶格结构,降低冷焊力,增加材料的韧性,使触头材料更不容易产生脱落,大大降低真空灭弧室的重燃率。

真空灭弧室老炼试验包括电流老炼和电压老炼。电流老炼一般是用一百至数百安培的电流,通过真空灭弧室的触头间隙形成均匀的扩散型真空电弧,利用电弧的高温去除电极表面的薄层材料,同时消除电极表面层中的气体、氧化物和杂质,改善触头表面状况。

电压老炼试验是通过施加高电压使真空电极放电,烧去触头表面的毛刺、杂质,提高真空灭弧室的耐压水平,有利于弧后绝缘的迅速恢复。采用实际的电容器回路对真空断路器进行老炼操作,兼有上述2种方法的效应。以数百安培的电流进行电流老炼,同时又以高幅值的恢复电压起到电压老炼的作用,通过老炼初期的击穿放电、合闸时的机械捶击、涌流热效应以及分闸时的电弧烧灼,对触头表面进行处理,能有效提升真空断路器的抗重燃性能。

二、老炼试验的一般方法和要求

真空断路器开合电容电流老炼试验参照GB1984-2003《高压交流断路器》进行,根据试验方式的不同,分三相老炼试验、单相合成老炼试验和单相老炼试验。

1、试验方式

1.1三相老炼试验

采用三相电源回路进行老炼试验与断路器实际运行状况基本一致,因此老炼试验优选采用三相回路,如图1所示,图中:Um为母线对地电压;Uf为试品极间恢复电压;Uc为电容器侧对地电压;Uo为电容器组中性点对地电压;I为回路电流;C为电容器组;TA为电流互感器;FD为放电线圈;SP为试品。

图1典型三相老炼试验接线

1.2单相合成老炼试验

35kV及以上真空断路器一般采用单相合成回路老炼试验,典型接线如图2所示,图中:DL为试验回路断路器;T1为电流回路变压器;T2为电压回路变压器;T3为电压回路调压器;C1,C2为电流回路电容器组;C3,C4为电压回路电容器组;L为调频电抗器;K1为电压回路闸刀;SP1为试品被试相;SP2,SP3为试品非被试相;TA为电流互感器;FYn为母线电压测量分压器;FYf为恢复电压测量分压器;MOA为避雷器;TV为电压互感器。

单相合成回路的特点是用试品的非被试相作为电压隔离开关,实现电压与电流同步;用电容C4、电抗器L组成重击穿放电支路,模拟实际重燃放电,提高老炼效果。采用单相合成回路进行老炼试验,能有效降低投切过电压,减小系统和设备风险。

图2典型单相合成老炼试验接线

1.3单相老炼试验

当不具备三相试验条件时,还可采用单相老炼试验,试验接线如图3所示,图中:Um为母线对地电压;Uf为试品极间恢复电压;Uc为电容器侧对地电压;I为回路电流;SP为试品;C为电容器组;TA为电流互感器;FD为放电线圈。

图3典型单相老炼试验接线

2、试验电流

3、试验电压

试验电压在试品分闸瞬间测定,其相间电压应不小于系统标称电压,并尽可能靠近试品处。对于三相试验,试验电压用三相试验电压的平均值表示,通过示波器或瞬态记录仪等设备来确定,任何相间的试验电压与平均试验电压的偏差不应超过10%。对于单相老炼试验,于试品处测得的试验电压应不小于1.4倍额定电压/。

4、电容回路

5、试验次数

老炼试验的连续无重燃次数及试验总次数限值如表2所示。当三相和单相老炼试验连续30次、合成老炼试验连续60次无重燃后,再次发生重燃的几率已远小于0.1%。如果三相和单相老炼试验总次数超过150次,合成老炼试验总次数超过500次后仍有重燃发生,则通过老炼试验的可能性比较小。

表2连续无重燃次数及试验总次数限值

单相合成老炼试验可通过LC支路模拟重击穿放电,提高老炼效果,但总体上由于对重燃的电流进行了限制,对灭弧室的清洗作用比较小,因此无重燃次数比直接试验要求多30次。

三、老炼试验与型式试验的区别

1、试验目的不同

型式试验用于考核真空断路器性能,对重击穿和NSDD次数有严格限制。老炼试验的目的是改善真空灭弧室性能,对重燃不进行考核,只进行数据统计。但当老炼试验中频繁出现重击穿或NSDD且没有好转趋势,或试验次数达到规定上限,表明该断路器真空灭弧室制造质量较差,或机械特性及参数调整不当,通过试验已无法对其性能进行改善时,可以终止试验。

2、试验对象不同

型式试验针对断路器某个型号规格的样品进行,试验合格后允许批量生产。老炼试验则面向所有用于并联补偿装置的真空断路器,在投运前必须进行试验。

3、试验方法和要求不同

结束语

综合上述,重燃主要出现在真空断路器灭弧室工作初期,一般在灭弧后几十至几百毫秒内发生,并随着操作次数的增加而急剧减少,最后稳定在基本无击穿工况。根据大量的实践和试验经验,12kV和40.5kV真空断路器的早期重燃率一般约为1.0%和4.0%,通过老炼试验,能够消除真空断路器的早期重燃,有效降低真空断路器实际运行期间的重燃率。

参考文献

[1]王季梅.真空开关技术及应用[M].北京:机械工业出版社,2008.

关键词:变压法干燥原理结束点判断

1前言

电力电容器真空干燥浸渍的目的是排除电容器芯子中的水分和气体,然后用经过净化处理并试验合格的浸渍剂灌注浸渍,填充产品内部固体间的所有空隙,以提高产品的电气性能。

“变压法”真空干燥浸渍工艺能弥补以上不足。它把低真空、高真空合二为一,在此阶段通过向真空罐内充干燥空气来改变罐内真空度,以便电容器芯子中的水分能充分逸出。通过一定的方法寻找一个结束点来判断真空干燥是否真正结束而进入灌注阶段。

2“变压法”真空干燥的原理

“变压法”真空干燥的原理:在传统的电容器真空干燥原理的基础上扬长避短。在真空干燥控制的温度范围内,当抽到一定的真空度时,绝缘材料中的水分的蒸发和凝结达到动态平衡时,由于真空罐内气体分子的热传导降低,绝缘材料的毛细孔中的水分不能获得足够的能量变成水蒸汽。这时通过一个放气阀向罐内放入一定量的干燥空气,以提高真空罐内气体分子的热传导,绝缘材料从表层到深层传递能量,使其毛细孔中的水分能获得足够的能量变成水蒸汽逸出被真空泵抽走。当又抽到一定的真空度时,再向罐内充一定干燥空气……。这样反复几次,大大的提高了电容器芯子中的水分子蒸发的速度,达到彻底排除电容器芯子中的水分和气体的作用。再通过一定的方法寻找一个结束点来判断真空干燥是否真正结束而进入灌注阶段。

3“变压法”真空干燥浸渍设备

要实现“变压法”真空干燥浸渍工艺,首先对现有的真空设备进行改造。

3.1对现有真空罐的加热系统进行改造,在现有的真空罐内底部加两路排管,蒸汽从罐尾分两路进入罐底的排管中,两路排管各通过3根管子把蒸汽引入罐夹套,从而对电容器进行加热。为使夹套中的冷凝水及时排出夹套,在真空罐外底部加一排水管,通过3个管子和罐夹套相连,当夹套有积水首先流入排水管,在排水管出口处安装了过滤器、排污阀、疏水器,还有一个液位器,平时疏水器工作,及时排出罐夹套中的积水,当积水过多达到液位器中所规定的红线位置,打开排污阀排出积水,保证了罐夹套中没有积水,使蒸汽更有效的加热罐内的电容器。由实验可知:通过把铂电阻温度探头放在罐内、罐中、罐尾、罐左、罐右、罐顶、罐底,及3台芯子中放有铂电阻温度探头的模拟电容器放在罐门、罐中、罐尾,用引出线引出真空罐外,连接在自动测温仪上,每隔1小时打印一次,结果发现电容器芯子温升比改造前加快,罐内温度比改造前均匀,温差可控制在2℃以内。

3.2真空机组仍采用滑阀式真空泵加二级罗茨泵,但主阀采用带位置指示器、波纹管轴封的高真空气动挡板阀,提高罐门、视镜窗等处的密封性能,使真空罐的总漏率控制在10Pa.L/s。

3.3采用德国莱宝公司的TM21型真空计,抗污染的TR216规管,带打印控制部分,和信号输出功能。以便监督人工操作和对整个真空干燥浸渍过程进行自动控制。

3.4在罗茨泵前安装冷却效果好的冷凝器,当电容器芯子中的水分蒸发为蒸汽被真空泵抽走后,经过冷凝器被冷却成水放出真空系统。防止水蒸汽乳化泵油,提高真空泵的抽气能力,延长真空泵的使用寿命。

4“变压法”真空干燥是否真正结束的判断

4.1判断的依据

V—真空罐的总体积;

p—关闭高真空气动挡板阀前真空罐内的真空度;

Q0—真空罐的总漏率;

—真空罐本身的表面放气、罐内电容器的芯子所含的气体和加热后蒸发的水蒸汽等所形成的放气量。

4.2判断方法

由于各真空干燥浸渍设备不同,pt、p、t、Q0、pb、pi参数应该怎样选择,要通过实践摸索才能确定。

5工艺试验

首先把真空罐及槽车中的积油用干布擦干净,然后关闭罐门加热抽真空,烘干内表面附着的积油使其变成蒸汽由真空泵抽走,直到内表面干燥为至,停止加热抽真空准备做工艺试验。

打开罐门把BFMr12/2-334-1的电容器28台放在槽车内,按单台注油的方式连接好。然后关闭罐门,对真空罐加热到80~90℃后,打开滑阀泵抽真空,温度控制在80~90℃,当真空度达到1kPa时,打开二级罗茨泵继续抽真空,当真空度达到1Pa时,关闭高真空气动挡板阀和罗茨泵,5min后,其真空度下降至2.56Pa,因2.56-1.35>0.1,

(由pt=p+Q0t/V计算得1.35Pa,规定pi为0.1),则打开放气阀向真空罐内充干燥大气至真空度70kPa,关闭放气阀,再打开高真空气动挡板阀抽真空达1kPa,再打开二级罗茨泵继续抽真空达1Pa,重复以上过程,直到关闭高真空气动挡板阀5min后,真空度下降为1.42Pa,1.42-1.35<0.1,则可以判断真空干燥已真正结束。依次进入降温、注油、浸渍阶段直至出罐。再选二种型号的电容器在同一个罐里做试验,试验结果见表2,同时每

关键词:容错控制;故障诊断;双电机;执行器失效

1容错控制手段

2基于自适应滑模观测测器的执行器故障诊断

设计状态变量x4j的观测器为

(1)

式中:4j是x4j的观测值,是基于自适应滑模观测器的失效因子的估计,为估计误差,为观测器增益系数,l>0,S2为滑模面,定义为S2=x4j-4j,设计失效因子的自适应律为

(2)

为增益系数,rj>0,则有如下定理:

定理2:对状态变量x4j设计如式(1)所示的自适应滑模观测器,设计失效因子的自适应律(2),当满足观测器增益l>0,不确定项上界|w2j|

则有limt∞S2=0,故观测误差渐近收敛.证毕。

3仿真(Simulation)

系统跟踪幅值为1rad,周期为4s的正弦信号,首先考察对负载侧非匹配不确定扰动的抑制性能,引入的非匹配不确定项为基于Stribeck模型的摩擦力矩,系统最大位置跟踪误差为0.016rad,存在稳态跟踪误差0.009rad;引入ESO和自适应补偿项后,系统最大位置跟踪误差仅为0.0036rad。对比结果表明所设计的控制策略对非匹配不确定项具有良好的抑制效果。

为了更好地进行容错控制的仿真研究,令系统的不确定项为零,4s时刻执行器1发生部分失效故障,失效因子由1突变为0.5,在0.2s后自适应滑模观测器估计出失效因子的真值,控制信号u1自动调整其增益,u2保持不变。执行器发生故障后若不采取容错控制,并且位置误差出现波动,则峰值达到0.0052rad,见图1;而采用了本文所设计的容错控制策略之后,系统性能和发生故障前基本保持一致,见图2。

由以上仿真结果可知,本文所提的双电机同步驱动伺服系统容错控制策略对执行器失效故障以及负载侧非匹配不确定扰动具有良好的鲁棒性。

关键词广播发射机功率开关真空器件

中图分类号:TN934.1文献标识码:ADOI:10.16400/ki.kjdkx.2015.05.012

SW100FShortwaveTransmitterTypicalFaultAnalysisandProcessing

XUChi

(StatePressandPublicationAdministrationofRadioQiliuyiTai,Yong'an,Fujian366000)

AbstractThispaperintroducesthecontrolprincipleSW100FshortwavetransmitterpowerswitchPSMwerediscussedforthepowerswitchcontrolpanelovercurrentfaultsandhigh-endleveltransmittercommoncauseofthefailureandphenomena;atthesametime,thevacuumdevicetransmitteroperationandmaintenancedescribed.

Keywordsbroadcasttransmitter;powerswitch;vacuumdevices

0前言

SW100F短波发射机是PSM系列短波发射机的一个机型。随着PSM技术的广泛应用,极大地提高了发射机的稳定性。然而,在发射机实际运维中,PSM功率开关控制板相对于其他器件的损坏比较频繁,发射机高末级故障较容易出现是一个事实。这些状况对于发射机运维者来说,了解PSM功率开关控制板结构、原理及各门限值;了解发射机高末级电路原理。既可快速对其中的元器件进行检测和更换,也可提高运维者业务技能,达到快速排除故障。在此,笔者就工作中遇到的PSM功率开关板和发射机高末级常见故障进行分析,对故障排查处理以及发射机真空器件的运维进行了论述。希望对此类故障的准确定位和快速有效处理有所帮助。

1SW100F短波发射机PSM开关管控制原理及典型故障分析

1.1PSM开关管控制原理

SW100F短波发射机PSM开关管的控制信号是由如图1所示电路引入它的门极。原理是当某个PSM开关的合闸信号由电信号转变为光信号,从而通过光缆传送到对应的光电隔离管B4,B4受光导通输出低电平引入D2/6、D2/5与12VB相连为高电平,两者经与非门输出D2/4为1信号。这个1信号输入到D2/13、D2/12在过载镍丝不起作用时也是1信号,故两者输出D2/11为0信号。再经过非门N9转为1信号,即高电平,所以DC管门极得高电平触发而导通。反之,当上述PSM开关受拉闸信号控制时B4没有光输入,相应DC管的门极输入为低电平。

当过载电流达到整定值时,镍丝两端的电压降引入光电隔离管B3,从而使其二极管发光,并由所发之光促使它的三极管饱和导电。这样B3的三极管集电极就由截止时的高电平转为导电饱和时的低电平。这个低电平脉冲输入到定时器D4/8,从而使D4/9输出高电平。由图1可知,此高电平经三级非门转变为低电平,因而使对应的DC管拉开,防范了过载事故。

1.2开关管过流故障快速排查分析

由开关控制板检测器送一个过流信号到图1中B3,从而引起开关管DC管关闭,检测器发出警告声,表明过流保护正常。因此,通过检测器可以检测出开关管过流保护是否存在故障,并且可以在加电过流的情况下利用万用表测出各个元器件的电平,通过这种方法,减少了检修的复杂程度,在加电过流的情况下,利用万用表测试控制小板的各个元器件的电位值与表1进行对比,就可以很简单的判断出哪个元器件出了故障,并进行更换。

表1开关管门限表值

2SW100F短波发射机高末故障分析和处理

2.1故障原因:高末管栅阴碰极(或通地)

故障现象:灯丝升到正常以后,加偏压,高末栅流反打,此时再加高压则高末帘栅过荷。如果处于正在播音的情况下碰极,则其现象为掉高压,高末帘栅过荷,高末栅流反打,栅压极低,几乎为零。

故障分析:发射机正常工作时,高末级工作在丙类弱过压状态,栅极加有直流负偏压,当栅阴碰极时,则栅极和阴极同电位,电流方向与原正常相反,同时形成大电流,又因帘栅级的保护电流先于阳级进行过荷保护,所以表现现象为高末栅流反打,高末帘栅过流引起保护,栅压为零。

故障处理:在处理中应注意区分是电子管碰极还是偏压回路通地。首先断开电子管的栅偏压回路,加偏压调试,如果故障现象依旧则是偏压回路通地;如果故障现象消失则是电子管栅阴碰极。

电子管栅阴碰极需关机待风水停后进行换管。处理中应对管座进行检查,防止因管座问题引起的误操作,簧片变形的应矫正,弹性不住的应换新环,在换完电子管后应对管座上各电极进行测量,谨防安装过程的次生故障的发生。

此类故障的常见处理方法:(1)电子管碰极,则按换高末管的操作规程进行操作。(2)电子管管座短路,则按换管座的操作规程进行操作。(3)栅极回路有通地点,则找出通地点并使其断开。

2.2故障原因:高末输出T网络电容C22、C23、C24击穿

故障现象:播音中发射机保护掉高压。降功率后加高压功率表仍无指示。分别对M3、M4、M5进行手动调谐,观察V2阳流表是否有反应,双指针功率表无指示,若无反应这其对应的电容击穿,其中M3对应C22,M4对应C23,M5对应C24.用点温计对它们进行测温。按常规击穿电容温度过高。

故障分析:C22、C23、C24电容击穿后,高末输出回路处于失谐状态,大电流直接通过电容到地,导致电容过热,高末级无输出功率。

故障处理:降功率后用分别用手动调谐M3、M4和M5来区分击穿电容位置或在发射机落高压后用点温计测量电容温度。确定击穿电容后,按照更换高末槽路电容的操作规程进行操作。操作时务必注意电容的伺服位置是否在原对应点上,坚决防止伺服位置混乱。

2.3故障原因:高末帘栅薄膜电容击穿

故障现象:发射机出现高末帘栅流过流保护,掉高压,高末栅流表出现瞬间突增。

故障分析:末级帘栅回路从帘栅电源输出算起,包括以下器件:高频线圈、帘栅泄放电阻、音频调制电感、电压和电流取样、两个穿心电容C18、C19;电感L7以及放点球、帘栅薄膜电容等。引起高末帘栅过流的原因很多,应根据电路的特点及时发现故障点。当电流取样电阻R2和R3阻值变大时也会引起高末帘栅过流保护。为了避免出现异常高电压打到帘栅薄膜电容上,必须使帘栅放电球充分发挥作用,可以根据季节的变化来调整放电球的距离。

故障处理:通过故障现象可以判断为高末帘栅薄膜电容击穿或高末帘栅电源回路中存在通地点现象。为了快速判断通地点,可以拆开末级机箱中帘栅电源的引线,并注意引线的悬空,用摇表或三用表与帘栅对地进行测量,若阻值正常则为电源回路中有通地点,否则为高末帘栅薄膜电容击穿,确定是高末帘栅级有通地现象,则拆下电子管,对帘栅薄膜电容进行更换。

2.4故障原因:高末电子管灯丝断开

故障现象:加灯丝后灯丝正常指示灯不亮,高末管无灯丝电流;高末管无亮度,不发热。

故障处理:关机待风水停止后,按换高末管的操作规程进行操作。

3发射机真空器件的管理和使用

综述以上故障可以看出,绝大部分都是电子管和电容的故障。在笔者工作的发射机房就2014年统计,处理了9次电子管故障和3次电容故障,占全部故障的52%。在除去真空器件本身的质量问题外,如何减少真空器件的损坏,则需要重视真空器件的日常维护和使用。

本机房采用的高末电子管为:京东方的FU2054C和成都旭光的FU616C,它们都是大功率金属陶瓷四级管,采用的是网状钍钨阴极、鼠笼型栅极、同轴电极结构,阳极采用超蒸发冷却方式,最高工作频率150MHz,输出功率可达100Kw。因此,如何保障真空器件的完好率是非常重要的。以下就真空器件的管理和维护谈谈个人意见。

(1)真空器件运管:在装卸搬运真空器件时需谨慎小心,尽量避免震动、碰撞、倾斜、雨淋和腐蚀;存放的库房的温度保持在5~40℃,相对湿度不得高于80%。

(2)真空器件入库:对新入库的真空器件必须进行认真的查验;仔细观察其外表,看其表面是否存在气泡、裂缝、沙点和机械损伤。同时使用欧姆表检验灯丝是否通路,用2500V兆欧表检查各级间绝缘电阻是否符合规定。除此以外还需要对真空器件进行打压检验,测试其耐压是否达到标准。打压时需严格按照高压试验操作卡片进行,防止操作不当造成损失。对于备用真空器件,需要每季都进行打压检验,通过打压使真空器件内的气体电离,提高真空器件的真空度和绝缘度,使其保持最好状态。

(4)电子管的老练:对于新的电子管上机前必须经过一系列试验性运行既通常所指的(电子管老练)。老练的具体步骤是:电子管加灯丝电压的30%运行30分钟;加灯丝电压的60%运行30分钟;加全灯丝电压运行一小时;发射机加全压在载波状态下运行10~15分钟;再加调试运行5~10分钟。通过老练可以使电子管的寿命大幅延长。按制度备份的电子管和存放在机房库房的电子管都必须经过老练试验,才能保证备份和库房的电子管在紧急情况下能够万无一失地随时启用。

(5)真空器件的运维:真空器件工作在高温、高压、高频的环境中,极易吸附空气中的粉尘、颗粒,这样就会降低真空器件的耐压程度,极间的阻值而造成器件的爬电、吱火,以至器件的损坏引发各类事故。因此需加强日常维护,检修时对其进行细心的擦拭,主要是对于面积较大的污物应用稀释肥皂水擦拭干净,再用绸布沾酒精擦拭;对于个别污点,可先用橡皮擦轻擦去除,再用绸布沾酒精擦拭。

4结束语

发射机运维是一门科学,需要维护工作者养成勤学、勤记、勤实践,业精于勤的作风。本文是笔者在广播发射机运行维护实践中的一些体会和经验,由于水平有限存在不足在所难免,欢迎同行指导。

关键词:大功率短波发射机;中和电容;技术改进

现代社会经济和科技的进步,对短波发射机的中和电容也提出了严格的要求,当前大功率短波发射机的中和电容已经不能够有效的满足中和调整的实际需求,在此种情况下,加强大功率短波发射机中和电容的技术改进是大功率短波发射机发展的必然趋势。

1大功率短波发射机中和电容的重要性

选取2500kW短波发射机进行分析,其中和电容主要是选用的型号为CTV4-18-0060的电容C16,在峰值的电压值为60kVDC,该电容的一端与槽路中的电容C10相连接,而另外一端则与耦合电容C20相连接。

综合上述的数据分析能够得出以下结论:功率为100kw的短波发射机在与功率为500kW的短波发射机发生中和条件后,其产生的电容能够持续、稳定地工作。

2中和电容容量值的计算

2.1计算100kW短波发射机中和电容的容量值

另外,高频时,帘栅极引线感抗抵消了C31的部分容抗,使C31增大,当工作频率等于C31与引线电感的串联谐振频率时,C31趋于无穷大,此时C1'≈0。

DF100A型短波发射机中和电容C34的容量范围大约为7.9pF-10.21pF。隔直耦合电容C35因其容量较C34大的多,均在1000-1300pF之间,它对中和电容容量范围的计算可以忽略不计,视为短路即可。

2.2500kW短波发射机中和电容容量范围计算

设定1、Ck2、Ck3、Ck4、Ck5、Ck6、Ck7、Ck8为灯丝旁路电容,容量均为6800pF;C20为隔直耦合电容,容量为2200pF;C6为帘栅薄膜电容,容量为18000pF,实测为12690pF;C10为穿芯水冷电容,既是前级槽路电容,也是中和电路的组成部分,其容量图纸给定为2000pF,实测为2080pF;C16为真空可调中和电容,型号为CTV4-18-0060,容量范围为14.2-63pF,峰值试验电压60kVDC;Cin为末级电子管TH-558栅极输入电容。

420C型号的5000千瓦发射器是利用短波频率,其中可调节C16电容可调节量约为8-17pF,因为耦合C20比调节电容C16的电容量大很多,C20在2000pF以上所以在电路中中和电容的效果特写小,可以被忽略,因此可看做C20短路。

因为在调节电容C16在最小值时,发射器仍然处于过中和的状态,所以会引发发射机过载荷,设备的可靠性变差。因此采用两值C16串联使用,满足发射机的17兆赫兹的中和要求,这样设备可以正常工作,运行良好,正常工作。串联中C16为9皮法,但是最小容量为14.2皮法,还是不能满足发射高频率中和调整的标准。

3大功率短波发射机中和电容的技术改进方式

3.1针对可调电容实施选型处理

通过对可调电容容量值进行精准性计算,可以发现在对100kW短波发射机进行可调真空电容的选型过程中,以DF100A型为标准,并确保其中和电容为C34,并将中和电容的实际容量范围控制在合理范围内,以保证大功率短波发射机的有效应用。而500kW420C型短波发射机的中和电容值与DF100A型100kW短波发射机相比存在一定差异性,其容量值范围主要集中在8.1PF-17.5PF范围内。

3.2100kW发射机的安装及使用效果

100kW短波发射机安装此可调中和电容时,可同时将该机型易损部件C33由板形穿芯电容更换为筒形高频瓷材料的穿芯电容,可调中和电容C34其一端用铜带与C33相连,另一端用隔直耦合电容C35的裤腰带压住连接铜带,该电容已于2009年10月26日在一部100kW短波机使用,调整方便,效果良好;改用筒形高频瓷材料穿芯电容后,解决了C33易损坏的故障。100kW短波发射机中和调整合适时,微调前级,末级表值不变,调谐末级,前级阴流变化小于0.02A。

短波发射机的维护,中和调整好与否,直接影响发射机的稳定运行。改进后的可调真空电容可做为100kW及500kW短波发射机的通用件,便于中和调整,消除了故障隐患,设备运行更加稳定。

[1]田进.短波波段高功率固态发射机的设计分析[J].电子技术与软件工程,2015(14).

关键词:复合材料氢氧化镍活性炭

1、前言

随着人口增长和经济发展,能源枯竭成为迫切的问题。镍/活性炭成为极具前景的电极材料。活性炭的高比表面积可进行电极/溶液界面双电层储存电荷储能[1],同时阻止Ni(OH)2颗粒的团聚[2],本文采用沉淀法制备Ni(OH)2/AC复合材料。

2、实验

2.1试剂

吐温-80(成都市科龙化工试剂厂)、草酸钠(成都市科龙化工试剂厂)、六水合硝酸镍(成都市科龙化工试剂厂)、氢氧化钠(川东化工)。

2.2Ni(OH)2/AC材料的制备

将活性炭于盐酸中浸泡48h。去离子水煮沸10min,抽滤洗涤,真空110℃干燥12h,密封备用。硝酸镍和草酸钠各0.1mol分别溶于100ml去离子水,搅拌混合,70℃水浴30min。加入吐温-80表面活性剂搅拌30min,加入2g活性炭,加NaOH维持pH值,60℃搅拌1h。抽滤,乙醇、去离子洗。110℃真空干燥,得Ni(OH)2/AC材料。

2.3样品测试

日本津岛XRD-6000对样品进行X射线衍射检测,BET测试用V-Sorb2008P比表面积孔径分析仪。

2.4样品电化学测试

将聚四氟乙烯、石墨、电极原料按1:1:8的质量比混合研磨,均匀涂覆在泡沫镍上,压片,120℃真空干燥10h,蜡封。

用天津市兰力科化学电子高技术有限公司的LK2006A型电化学工作站进行循环伏安测试,采用三电极体系,对电极为铂电极,参比电极用甘汞电极,电解液为6mol/LKOH溶液。

3、结果与讨论

3.1粒度分析

对沉淀法制备氢氧化镍过程中影响颗粒大小的因素进行正交实验探究。用激光粒度分析仪对Ni(OH)2比表面积分析,结果如表1所示。

可知表面活性剂浓度、反应液PH值、转化温度对Ni(OH)2比表面积的影响依次减小。

3.2X射线衍射图谱(XRD)

Ni(OH)2/AC的XRD图谱在2θ为18.8°、33.02°、38.20°分别对应β-Ni(OH)2的(001)、(100)和(101)特征衍射峰。在2θ角25.6°(002)和42.6°(101)为活性炭典型的乱层碳衍射峰。因此,所制备的材料为Ni(OH)2/AC复合材料。

3.3比表面积分析(BET)

负载前后活性炭的比表面积降低很多,可能是Ni(OH)2负载量过大,降低了活性炭比表面积。由于Ni(OH)2粒径小,表面能较高,更容易发生团聚。

3.4循环伏安测试

由表3可知,尽管Ni(OH)2/AC复合材料的比电容高于纯活性碳电极,但活性炭的孔被Ni(OH)2堵塞,导致电容的损失。

从图2和表4知,随着扫描速度的增加,电容和比电容都有所增加。

4、结论

(1)表面活性剂浓度、反应液PH值、转化温度对氢氧化镍比表面积的影响依次减小。

(2)Ni(OH)2/AC复合电极片的电容和比电容比纯活性炭电极片的电容和比电容要高;随着扫描速度的增加,电容和比电容相应都有所增加。

参考文献:

关键词:多断口真空断路器;静动态电压分布;模块化

1模块化三断口真空断路器模型

在构建具有串并联结构模块化多断口真空断路器单元有限元分析模型的过程当中,需要考虑的计算对象包括环氧绝缘筒部件、瓷套部件、屏蔽罩部件、外绝缘伞群部件、以及动静触头部件等多个方面。对于具有串并联结构模块化多断口真空断路器而言,触头涉及到动式触头、以及静式触头这两种类型,所对应的材料主要为铜铬合金,而具有串并联结构模块化多断口真空断路器屏蔽罩所对应的材料则主要为钢铁。在该模块化三断口真空断路器单元有限元分析模型当中,介电常数的取值均为1.0。

同时,在基于对串联结构样机单臂试验以及三相样机基本情况分析的基础之上,该计算模型包括以下几种工况:A模型,指不带底部支架条件下所对应的串联结构样机单臂模型;B模型,指带底部支架条件下所对应的串联结构样机单臂模型;C模型,指带底部支架条件下所对应的串联结构样机双臂模型;D模型,指带底部支架条件下所对应的三项样机模型。

2电位分布计算

建立在该分析模型的基础之上,通过仿真计算的方式分析可知:对于带有底部支架的串联样机单臂模型而言,与之相对应的断路器电位分布计算示意图如下图所示(见图1)。

图1断路器电位分布计算示意

结合图1中的数据信息不难发现:对于按照前文所述方式所布置的模块化三断口真空的管路器而言,在按照“U”字型形态布置的情况下,上侧触头/下侧触头,触头/屏蔽罩间隔区间内的电压水平呈现出了较为显著的变化趋势。且图1中还显示,断口变化最为显著的区域表现为:上侧触头/下侧触头。该研究结果提示:上侧触头/下侧触头对应区域范围内具有较大的场强特性。根据图1中所反映的电位分布特征,可得到如下表(见表1)所示的断口分压比数据示意表。

结合表1中所提示的数据信息可知:三断口真空断路器所对应的断口表现出了严重比例失调的电压分布特征。其中,高压端断口所对应的分压水平达到了67.18%比例(占总分压比比例)以上,该数据主要提示:杂散电容会对本区范围内的静态分压产生极为严重的影响。不但如此,此区段内所生成的杂散电容也有可能对瞬态恢复电压的分布情况产生关键性的影响。从这一角度上来说,为了能够最大限度的保障电压分布的合理与可靠,就需要通过引入均压处理措施的方式,改善断口对应电压分布水平。同时,根据表1中对四类模型断口分压比数据的分析:串并联结构模块化多断口真空断路器断口区段对应电位分布相互之间的影响水平并不显著。与此同时,相对于整体模型而言,不带底部支架的串联样机单臂模型差异较小,所计算数据精确可靠。综合上述分析可知:在有关具有串并联结构模块化多断口真空断路器所对应电位分布计算的实施过程当中,不需要安装支架,可保障计算数据的可靠。

3真空灭弧室内电场分布计算

在本文所假定的具有串并联结构模块化多断口真空断路器计算模型当中,所对应的外边界尺寸量级标准为10.0m,而屏蔽罩厚度对应的尺寸量级标准为mm。由此可知,整个具有串并联结构模块化多断口真空断路器计算模型结构实体尺寸存在比较大的差异性。为避免因真空灭弧室内结构过于复杂因素影响而对电场分布计算结果产生不良的影响,就需要通过引入基于子模型计算方法的方式,确保所获取电场分布数据的可靠。通过仿真计算的方式分析可知:对于带有底部支架的串联样机单臂模型而言,与之相对应的真空灭弧室内电场分布计算示意图如下图所示(见图2)。

图2真空灭弧室内电场分布计算示意图

结合图1中的数据信息不难发现:在以1.0V为单位的运行电压条件作用之下,高压段断口、中间段断口、以及低压段断口触头表面所对应的场强计算max数值分别取值为73.71,23.85,13.98(单位:V/m)。在此基础之上,对于屏蔽罩而言,与上述运行工况相对应的场强计算max数值分别取值为69.81,22.56,13.24(单位:V/m)。结合以上数据可知:对于所假定的具有串并联结构模块化多断口真空断路器而言,单元所对应场强max数值均出现在触头表面的圆弧位置,其次为屏蔽罩梁端圆弧与直线呈相切关系的区域内。这一研究结果提示:在有关具有串并联结构模块化多断口真空断路器所对应的电场分布计算过程当中,灭弧室设计期间,需要特别注意触头表面圆弧区域以及屏蔽罩圆弧区域的安全处理工作。

4结语

参考。

[1]张华赢,杨兰均,李良书,等.投切电容器组专用真空断路器性能研究[J].电力电容器与无功补偿,2011,(3).

[2]吴高波,阮江军,黄道春,等.126kV模块化三断口真空断路器静、动态均压设计[J].中国电机工程学报,2013,(19).

关键词:微机控制;消弧线圈;自动跟踪补偿

对于不同电压等级的电力系统,其中性点的接地方式是不同的,我国6~66KV配电系统中主要采用小电流接地运行方式。在小电流接地系统中如果发生单相接地故障时,其非接地相的相电压将升高至线电压。如果是不稳定的电弧接地故障,其过电压值可达三倍以上。

由于我公司6KV井下供电线路的不断延伸,使得供电系统的接地电容电流不断增大,日常我公司6KV供电系统Ⅰ、Ⅱ段母线并列运行,Ⅲ、Ⅳ段母线并列运行,其中6KVⅠ、Ⅱ段线路接地电容电流已达85A,6KVⅢ、Ⅳ段线路接地电容电流也已达83A。为了减小接地电容电流,有效防止系统弧光接地,提高供电质量,按照国家对过电压保护设计规范新规程规定,电网电容电流超过10A时,均应安装消弧线圈装置。

消弧线圈装置自应用于电力系统以来,随着微电子技术的飞速发展及广泛应用,也有了较大的发展。目前国内生产的消弧线圈装置主要有以下几种:调隙式消弧线圈装置、调匝式消弧线圈装置、调励磁式消弧线圈装置等。以上几种装置均能实现自动跟踪调谐,但还有其不足之处。如调节速度慢、故障率高、容易引入谐振源、二次系统电源结构复杂等不足之处。同时由于上述各装置均采用单片机控制系统,其运行可靠性不高,且信息记忆和管理功能差。

电力系统出现单相接地故障后,如何准确地选出接地线路一直是个难题,尤其是中性点经消弧线圈接地的系统更为困难。因此,高压电网接地故障后,如何快速准确地选出接地线路也是上述各装置无法解决的难题。

我公司使用的ACHC系列调容式消弧线圈装置采用先进的PC104工控机系统,总线式结构,彩色液晶屏汉字显示,具有运行稳定可靠、显示直观,抗干扰能力强等特点,同时系统具有完善的参数设置及信息查询功能。该系统克服了以前各消弧线圈装置调节范围小的缺陷,能够进行全面调节。该装置采用调节残流法和有功功率法等先进算法,对高压接地线路进行选线,选线准确、迅速。

1工作原理

消弧线圈是一个装设于配电网中性点的可调电感线圈,当电网发生单相接地故障时,消弧线圈的作用是提供一个电感电流,补偿单相接地的电容电流,使电容电流减小到规定值以下;同时,也使得故障相接地电弧两端的恢复电压速度降低,达到自动熄灭电弧的目的。本成套装置为调容式消弧线圈装置,首先根据系统运行方式及发展情况,确定消弧线圈在过补偿条件下的额定容量,即可确定在接地故障时可提供的电感电流。增设消弧线圈二次电容负荷绕组,同时在该消弧线圈的二次绕组上并联若干组(一般为四至五组)低压电容器,通过控制器控制真空开关或反并联晶闸管的通断组合来控制二次电容器投入的数量,来调节消弧线圈二次容抗的大小,从而改变消弧线圈一次侧电感电流的大小,即调节补偿电流的大小。

2装置总体构成

该装置由接地变压器、调容式消弧线圈、电容调节柜、微机控制器、阻尼电阻箱等构成,总体构成图如(图二):

2.1接地变压器

消弧线圈系统在接入时必须有电源中性点,在其中性点上接入消弧线圈。接地变压器的作用是在电力系统为型接线或Y型接线中性点未引出时,用接地变压器构造成系统中性点。

接地变压器采用Z型接线的变压器,即ZN,yn11连接的变压器。由于变压器高压侧采用Z型接线,每相绕组由两段组成,并分别位于不同相的两铁心柱上,两段线圈反极性连接,两相绕组产生的零序磁通相互抵消,故零序阻抗很低,同时空载损耗也非常小,变压器容量可以100%被利用。用普通变压器带消弧线圈时,消弧线圈容量不超过变压器容量的20%,而Z型变压器则可带90%~100%容量的消弧线圈,可以节省投资。

接地变压器除可以带消弧线圈外,也可带二次负载,代替站用变。在带二次负载时,接地变压器的一次容量应为消弧线圈与二次负载容量之和;接地变压器不带二次负荷时,接地变压器容量等于消弧线圈容量。

2.2调容式消弧线圈

调容式消弧线圈与普通消弧线圈的区别,主要是在增设消弧线圈的二次电容负荷绕组,其结构如下图所示。N1为主绕组,N2为二次绕

(上接121页)组,在二次侧并联若干组用真空开关或晶闸管通断的电容器,用来调节二次侧电容的容抗值。根据阻抗折算原理,调节二次侧容抗值,即可以达到改变一次侧电感电流的要求。电容值的大小及组数有多种不同排列组合,以满足调节范围和精度的要求。(图三)

2.3电容控制柜

电容控制柜由电容器、真空开关(或晶闸管)等构成。控制器根据对电网对地电容电流的采样,自动跟踪调节二次侧电容器的容量,从而自动补偿系统的单相接地电流。

电容控制柜内装有若干只电容器,容量配置比例为:C1:C2:C3:C4:C5:……=1:2:4:8:16:……。根据二进制组合原理,4只电容有16种组合,即实现16种调节;5只电容有32种组合,即实现32种调节。调节开关采用真空开关(或大功率双向晶闸管),调节速度快。电容器选用自愈式电容器,额定电压为1000V。

2.4阻尼电阻箱

在自动跟踪消弧线圈中,调节精度较高,残流较小,接近谐振点运行,为防止产生串联谐振过电压,在消弧线圈接地回路中串接了阻尼电阻。从而确保系统正常运行时,中性点位移电压不超过15%相电压。

阻尼电阻选用抗高温且性能优良的不锈钢电阻,当系统发生单相接地故障时,系统将该阻尼电阻短接,以免烧毁阻尼电阻;当系统恢复正常时,断开阻尼电阻短接触点,使阻尼电阻正常串接消弧线圈回路中,否则系统有可能因失去阻尼电阻而出现谐振过电压。

2.5接地选线单元

接地选线单元集成于控制器内,选线线路最大为42路。设有三种选线方法,即“有功功率法”、“调节残流法”及“有功功率法+调节残流法”。

①有功率法:当系统发生单相接地故障时,接地线路的零序功率中包含有消弧线圈、接地变压器铜损、铁损及系统对地绝缘电阻所产生的有功功率;非接地线路零序功率中只包含自身产生的有功功率,两者相差很大,可判别有功功率较大的为接地线路。

②调节残流法:当系统发生单相接地故障时,首先采集各线路的零序电流,并记录下来;然后控制消弧线圈改变一档,再把各线路的零序电流采集一遍,也记录下来,同时求出各消弧线圈在调档前后零序电流的变化量。因为非接地线路的零序电流在调档前后无明显变化,而接地线路的零序电流变化量为调档前后电感电流的调节值,所以零序电流变化量最大者即判为接地线路。

③有功功率法+调节残流法:

该选线采用有功功率及残流变化量为综合判据,对接地线路进行判断选线。由于该方法集成了两种方法的优点,所以选线更为准确。

3该系统日常维护的几个要点

电容放电是因为两金属电极间的介质没有完全绝缘。理论的绝缘是在真空情况下进行的,不会放电,但在实际情况下,任何物体都有一定的导电能力,比如说空气,干燥的空气,导电能力较差,绝缘能力强,但现实生活中,空气中很难做到干燥,所以很容易出现放电现象。

电容:即电容器容纳电荷的本领。

电容器:是由两块金属电极之间夹一层绝缘电介质构成。当在两金属电极间加上电压时,电极上就会存储电荷,所以电容器是储能元件。

【关键词】内部过电压;危害;分析

一、操作过电压

在中压配电网中,操作过电压主要包括:开关开断电容器组产生的操作过电压,开关关合和开断旋转电机、变压器、电抗器等感性负载产生的操作过电压。下面详细叙述这两种过电压的产生与采取的限制措施。

1.开关开断电容器组产生的操作过电压。开关在开断电容器组这种容性负载时,总有―相率先过零熄弧(假设为A相),此时会有一个接近幅值的相电压残留在电容器端。由于B、C相的存在,中性点出现位移,10ms后开关A相触头的恢复电压可达2.5Uphmax(最高运行相电压幅值),而此时可能出现B相、C相不能开断的情况。如果C相不能开断,恢复电压最大可达4.1Uphmax,若此时开关触头发生重燃相当于一次合闸,使电容器组重新获得能量。电压波产生振荡,在电容器端部、极间和中性点上都会出现较高的过电压,过电压幅值会随着重燃次数增加而递增。这种过电压具有明显的随机性,与诸多因素有关,符合正态分布规律。但是,只要开关不发生重燃,这种过电压将不会超过关合时的过电压。

2.真空开关在关合和开断感性负载产生的操作过电压。感性负载包括高压电动机、发电机、变压器、电抗器等,真空开关在关合和开断感性负载时,会产生操作过电压。(1)真空开关“开断”感性负载时产生的操作过电压。真空开关具有较强的熄弧能力,不需要等待电流过零熄弧,而是在电流过零之前几安培或者l0―20A就可以将电流突然截断,强制熄弧。而这一截流现象,却引发了截流过电压的产生,甚至继而引发多次重燃过电压和三相同时开断过电压;(2)真空开关在“关合”感性负载时产生的操作过电压。真空开关在“关合”时出会出现类似“开断”过程的过电压,主要原因是开关在关合过程中有“弹跳”现象,触头接通后又分开,多次的“弹跳”相当于经历了多次的开断。有统计表明,关合过电压出现的次数要大于开断低电压出现的次数。

二、单相接地过电压

在中性点不接地的l0kv中压配电网中,当发生单相接地时,会使中性点产生位移,使全相上出现较高的工频过电压,其幅值与中性点接地方式有关,最大幅值可达到倍。单相接地引起的工频电压升高,虽然幅值不算太高,但它容易诱发其他操作过电压,会使操作过电压的幅值提高。

三、谐振过电压

电网中的电感、电容元件,在一定电源的作用下,并受到操作或故障的激发,使得某一自由振荡频率与外加强迫频率相等,形成周期性或准周期性的剧烈振荡,出现谐振现象,电压幅值急剧上升,即产生谐振过电压。

(1)线性谐振是指参与谐振的各电参量均为线性,电感参数为常数,不随电压或电流的变化而变化。电感元件为不带铁芯或带有气隙的铁芯,并与电容元件组成串联谐振回路。谐振一般发生在电网自振频率与电源频率相等或相近时。对于中压配电网,这种线性谐振较多发生在消弧线圈补偿网络或表现为某些传递过电压的谐振等。消弧线圈网络在全补偿运行状态(脱谐度v=0),当发生单相接地网络中出现零序电压时,便发生消弧线圈与导线对地电容的串联线性谐振,这种谐振将会使中性点位移达0.5Uph。

(2)非线性谐振一般指由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成谐振回路,因铁芯电感元件的饱和现象,电感参数不再为常数,而是随着电流或磁通的变化而变化。在一定的情况下可自激产生,但大多数需要外部激发条件,它可突然产生或消失,当激发消除后常能自保持。激发条件主要有;电圈断线、断路器非全相动作,熔断据一相或两相熔断等原因造成非全相运行,更多的是在中性点不接地系统中。电压互感器突然合闸使一相或两相绕组出现涌流,线路单相弧光接地出现暂态涌流等原因,使电磁式电压互感器三相电感程度不同地产生严重饱和,形成三相或单相共振回路,激发各次谐波谐振过电压。

U2=U0(C12/C12+3C0)(1)

式中U0――高压侧出的零序电压,kV;

C12――高低压绕组间电容,μF;

C0――低压侧相对地电容,μF。

四、限制内部过电压的措施

1.操作过电压的限制措施。为限制合闸引起的操作过电压,通常开关中增加一个并联电阻和一对辅助触头,使合闸过程分为两个阶段。这样,使每一个的幅值;又由于电阻的阻尼作用,加速了振荡过程的衰减,使过电压幅值受到有效的限制。除采用开关的并联电阻作为限制操作过电压的重要措施外,避雷器也是很重要的保护设备。避雷器限制操作过电压是以其操作波放电电压和操作冲击残压表示其保护水平,这些数值的选取决定于系统的情况和避雷器元件的性能,设备的操作冲击绝缘水平是由避雷器的操作冲击残压决定的,但是由于采用了带并联电阻的开关,只是在并联电阻失灵或其他意外情况出现较高幅值的操作过电压时,避雷器才动作,即改善了避雷器的工作条件,又将过电压限制在允许的范围内,系统得到可靠的保护。

3.避免谐振过电压的措施。(1)采用消弧线圈接地方式,跟踪过程中要偏离谐振点,保证脱谐度V≠0;(2)变压器的高压侧不采用熔断器,选用同期性能较好的开关,避免产生零序过电压,防止变压器传递过电压和铁磁谐振过电压;(3)选用励磁特性较好、饱和点高的电磁式电压互感器;(4)在电压互感器开口三角形绕组上装设灯泡(6―10kv电网接200瓦灯泡)或者专用消谐器;(5)在电压互感器一次绕组的中性点上装设专用消谐器;(6)在电网中装设四极式自控式阻容吸收器,当其动作时,在零序回路中突然接入电阻和电容,对破坏谐振条件,阻尼谐振有一定的作用。

THE END
1.对于高压开关动特性测试主要是测试哪些参数速度动作分闸触头断高压开关动特性测试主要是对高压开关的机械特性进行测试,以确保其在电力系统中的可靠运行。下面小编给大家介绍一下其主要测试的参数: 一、时间参数 分闸时间 定义:开关从接到分闸指令瞬间到所有极的触头分离瞬间的时间间隔。 重要性:分闸时间过长可能导致故障电流不能及时切断,影响电力系统的稳定性和安全性。例如,在https://www.163.com/dy/article/JJP4FGKK05567999.html
2.蓄电池检测仪显示的寿命是多少?汽车蓄电池的正常使用寿命一般为两年左右。然而,通过适当的维护,可以将使用寿命延长一到两年,甚至最佳情况下可以使用五年。 为了延长蓄电池的使用寿命,应注意以下几点:启动车辆时,每次启动时间不得超过3-5秒,并且重启间隔不得小于10秒。如果汽车https://www.autohome.com.cn/ask/12926760.html
3.电磁阀详情产品说明技术文章电磁阀分为常闭和常开二种;一般选用常闭型,通电打开,断电关闭;但在开启时间很长关闭时很短时要选用常开型了。 寿命试验,工厂一般属于型式试验项目,确切地说中国还没有电磁阀的专业标准,因此选用电磁阀厂家时慎重。 动作时间很短频率较高时一般选取直动式,大口径选用快速系列。 http://wap.app17.com/c57415/article/d21106.html
4.高级电工考试试题及答案55,当人体触电时间越长,人体的电阻值( B ).A,变大; B,变小; C,不变.56,电气设备保护接地电阻越大,发生故障时漏电设备外壳对地电压( C).A,越低; B,不变; C,越高.57,测量变压器绕组对地绝缘电阻值接近零值,说明该绕组(C).A,受潮; B,正常; C,绝缘击穿或接地短路.58,在容器内工作时,照明电压应https://www.360doc.cn/article/33332277_1088570669.html
5.煤矿安全生产主要岗位责任制煤矿安全生产管理制度煤矿安全生产技术操定期向法定代表人(法人代表、实际控制人、董事长)如实报告矿井的安全生产工作。 17.加强职业危害的预防与治理,做好作业现场的劳动保护工作, 按规定安排对相关的从业人员进行健康检查。 18.主动接受并积极配合安全生产执法检查,督促落实安全生产监管监察指令,建立和维 护企业安全生产诚信。https://www.mkaq.org/html/2020/12/24/551840.shtml
6.建筑电气方案范文12篇(全文)同一建筑物的开关采用同一系列的产品,开关的通断位置一致,操作灵活、接触可靠;相线经开关控制。开关安装位置便于操作,开关边缘距门框边缘的距离0.15-0.2m,相同型号并列安装及同一室内开关安装高度一致,且 控制有序不错位,暗装的开关面板应紧贴墙面,四周无缝隙,安装牢固,表面光滑整洁,无裂纹、划伤,装饰帽齐全。https://www.99xueshu.com/w/ikey5hupjyqj.html
7.blog.csdn.net/qq反时限是使动作时间与短路电流的大小无关,当动作电流大时,动作时间就短,反之则动作时间长,利用这一特性做成的继电器称为反时限过流继电器。它是感应式,型号为GL型。它的动作电流和动作时间的关系可分为两部分:一部分为定时限,一部分为反时限。当短路电流超出一定倍数时,电流的增加不再使动作时间缩短,此时表现为定https://blog.csdn.net/qq_24658577/article/details/122930413
8.电磁兼容性试验(精选十篇)因此,在开关触点上产生的电弧会产生宽带瞬态电磁干扰。当然,固态继电器没有移动部分,因此不会产生电弧,这使固态继电器获得了广泛应用。 (4)固态器件。二极管存在恢复周期,这会引致交流电源产生瞬态毛刺,从而形成瞬态电磁干扰。 2 飞机电磁兼容试验 通常,现代飞机从开始设计到定型大约需要10年甚至数十年时间,组成飞机的https://www.360wenmi.com/f/cnkey6tys1zs.html
9.电工实习报告(15篇)(4)系特色试验项目:鲜啤的酿造; (5)自酿鲜啤甲醇含量的测定。 在不知不觉中,为期几个月的实习结束了,这段时间带给了我太多的回忆与反思,我很庆幸能够在在实验室实习。这次实习让我收获颇多,在这几个月里,始终尽我最大的努力认真做好每一件事,虽然仍然是以一个学生的角色在实习,但是我以一个上班族的工作https://www.pinda.com/zhichang/shixibaogao/249962.html
10.2022年电工(初级)考试题库模拟考试平台操作A、调速性能好 B、价格低 C、功率因数高 D、交直流两用 6、【单选题】三相异步电动机多处控制时,若其中一个停止按钮接触不良,则电动机()。( D ) A、会过流 B、会缺相 C、不能停止 D、不能启动 7、【单选题】三相异步电动机工作时,其电磁转矩是由旋转磁场与()共同作用产生的。( B ) https://zx.aqscydt.com/ITCB7SSQ.html
11.电力系统录波仪录波仪配置了多种模拟通道,全部采用电气隔离技术,隔离耐压达DC3000V;模拟通道类型包括交流电压、交流电流、直流电压、直流电流、转速信号等,覆盖了电力系统各个环节的电气信号类型。开关输入信号类型包括有源、无源两种。开关输出信号为继电器节点。 录波仪具备功能完备的集成软件,包括了录波、试验、监测、长时记录等功能http://www.shlydk.com/Article-3096516.html
12.电气实习报告单片机采样信号检测到K2完全断开,按设定时间延时后停止驱动VT直到关断,然后K1也断开,直流继电器停止工作。由于触头吸合/分断过程的动作时间比电子器件的动作时间长得多,所以,完全可以实现动态过程由电力电子器件承担,稳态由继电器K2承担的要求。本设计的优点是当带额定负载切换时对直流网络冲击很小,无需外加驱动电路,可https://www.unjs.com/fanwenwang/shixibaogao/20230302183358_6572887.html
13.低压电工特种作业证考试题库(含答案)c4把交流电和直流电分别通入阻值相等的两个电阻如果在相同的时间内电阻产生的热量相等我们把直流电的大小定义为交流电的 低压电工特种作业证考试题库(含答案) 选择题 1、坚持办事公道,要努力做到( )。 A、公私不分; B、公正公平; C、有求必应; D、全面公开; B 第一章 概论 2、我们把绕向一致,感应电动势的https://easylearn.baidu.com/edu-page/tiangong/exercisedetail?id=6edbfce85cbfc77da26925c52cc58bd631869335&fr=search
14.图解电工基础第8章电气故障维修技术在线免费阅读2)电动机已经工作很长时间,在此之前一直运行正常? 3)电动机是否经过大修或保养后不能再运转了? 4)电动机电源是否更换过? 5)电动机控制线电是否改装过或更换过?整改后的电路是否是第一次使用? 6)电动机的控制开关是否更换过?是否更换开关后第一次使用? https://fanqienovel.com/reader/7108626592066178083
15.太仆寺旗宝昌第一中学通用技术实验室教学设备采购合同脚踏板 2 种方 式控制开关,人性化设计解放双手 (多功能热转印机) 五合一多功能印像机采用微电脑控制, 精确控制温度,时间.集成平面烫画转印机(加热板面积 为 29×38CM),烤杯机(11oz,适合直径约 8.1CM,高约 1 多功能 9.5CM 的热转印马克杯),大烤盘机(10 寸加热盘垫,直 热转印 径 15.5Chttps://www.ccgp-neimenggu.gov.cn/gpx-bid-file/2022/11/16/402881cc84794b4901847f482b9e48b2.pdf?accessCode=65da20ba305560e55e3b92e36f76282f
16.直流耐压试验结束后,应迅速降低电压到零,然后对被试品充分放电A. 组合开关 B. 直流接触器 C. 继电器 D. 热继电器 查看完整题目与答案 下列电器能用来通断主电路的是( ) A. 接触器 B. 自动空气开关 C. 刀开关 D. 热继电器 查看完整题目与答案 复合按钮在按下时不是其触头动作情况是( ) A. 常开触头先接通,常闭触头后断开 B. 常闭触头https://www.shuashuati.com/ti/ca8cb9ddcd2f432199e9d6c0189d0e3f.html?fm=bdbds8eab6f681fc01b19e6d1b8ca94bba8f8
17.63条激光切割机常见故障及解决方案20 送料机长送料? 送料机长送料一般是光电开关坏,或者光电开关的光感灵敏度不对,送料机光电开关的光感灵敏度可调在接长闭的情况下上下两个开关,同时通光时送料机开始工作,当光灵敏度过于灵敏时,即使有切割材料遮挡也会感应为通光.所以会长送料,此时要调节光电开关接线处的灵敏度调节旋钮,调节到有材料遮挡时光https://www.wannengye.com/view/index/57de221b62fc9/
18.电动车修理培训学校电动车维修视频短期电动车维修培训班学修电动第二步:若短路了灯还是一个不亮,说明转向开关坏了,直接换一个开关 第三步:要是前两频步做了灯还是不亮那么主是4个灯同时坏了,不过比较少见 结果按步骤做到 步,问题找到并解决,可见这个软件真的实用好用 再看一个实例:电动车一开电门没有动油把转把车自己行走不 看了一下APP这个现象和软件中的第7点相https://www.077299.diytrade.com/
19.高压开关电器试验开关绝缘试验.pptx断路器交流耐压试验规程 目录断路器的定义及结构断路器的类型断路器交流耐压试验规程断路器的原理及作用断路器的定义断路器是指能够关合、承载和开断正常回路条件下的电流并能在规定的时间内关合、承载和开断异常回路条件下的电流的开关装置。断路器按其使用范围分为高压断路器与低压断路器,高低压界线划分比较模糊,https://m.renrendoc.com/paper/302894678.html