本发明涉及智能医学技术领域,更具体地,涉及一种融合临床思维的智能辅助问诊方法及系统。
背景技术:
社会的进步和人们生活水平的提高,使人们越来越重视自身的健康问题,人们的医疗需求日益增长。另外有些人,即使没有出现身体不适,也会定期到医院检查身体状况。
因此,对病患来说,按传统疾病诊疗过程,实际就诊体验很差;同时,相对病患人员,诊疗人员数量严重不足,诊疗人员工作强度严重偏大。
技术实现要素:
为了克服上述问题或者至少部分地解决上述问题,本发明提供一种融合临床思维的智能辅助问诊方法及系统,以实现对当前病历的初步确定和智能导诊,从而大大减缓医院人员不足的压力,降低医院人员的工作强度,提升患者就医体验。
其中,所述基于所述标准病例的反馈信息是指获取的病患回答信息、当前病历反馈的回答信息或者历史病历反馈的回答信息。
其中,所述标准病历数据库包括:标准病历主诉库、有序标准问题库和所述有序标准问题库对应的标准回答库。
其中,所述lsi主题的获取处理过程包括:对所述标准病历主诉进行分词处理和去除停止词处理,获取若干单词;根据各所述单词在所述标准病历主诉中出现的频次,对所述单词进行分类运算,获取若干所述lsi主题。
其中,所述根据各所述单词在所述标准病历主诉中出现的频次,对所述单词进行分类运算,获取若干所述lsi主题包括:按所述单词在医学词典中的序号对所述单词进行标号并计算所述单词在所述标准病历主诉中出现的频次;以所述标号和所述频次对为元素构建标准病历主诉文档向量;计算所述标准病历主诉文档向量中各元素对应的所述单词的tf-idf值,获取tf-idf向量,并由所述tf-idf向量训练获取lsi模型,设置所述lsi主题。
本发明提供的一种融合临床思维的智能辅助问诊方法及系统,通过将当前病历主诉与标准病历数据逐步匹配,确定目标标准病历,能够有效用于对当前病历的初步确定及智能导诊,从而大大减缓医院人员不足的压力,降低医院人员的工作强度,提升患者就医体验。
附图说明
图1为本发明实施例一种融合临床思维的智能辅助问诊方法流程图;
图2为本发明实施例一种获取lsi主题的处理过程流程图;
图3为本发明实施例一种根据单词频次获取lsi主题的处理过程流程;
图4为本发明实施例一种标准病历数据库结构示意图;
图5为本发明实施例一种融合临床思维的智能辅助问诊系统结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
作为本发明实施例的一个方面,本实施例提供一种融合临床思维的智能辅助问诊方法,参考图1,为本发明实施例一种融合临床思维的智能辅助问诊方法流程图,包括:
在对步骤s1和步骤s2进行具体说明之前,先明确几个定义如下:
病历主诉关键词:通常病历主诉为一段自然语言,通过对病历主诉进行一定的处理,可以提取其中能够完整表达病历主体主诉意思的若干关键词,该关键词即为病历主诉关键词。以下说明中,若干均指一个或多个。
标准病历主诉关键词:通常标准病历主诉为一段自然语言,通过对标准病历主诉进行一定的处理,可以提取其中能够完整表达标准病历患者主诉意思的若干关键词,该关键词即为标准病历主诉关键词。
对于步骤s1和步骤s2,具体而言,在通过对标准病历主诉数据进行关键词提取,并对关键词进行统计及聚类之后,根据聚类信息设置若干个lsi主题,建立并训练lsi模型。同时,对于当前病历主诉和标准病历主诉,分别进行自然语言处理,并分别提取当前病历主诉关键词和标准病历主诉关键词。
其中,分词处理:是指将一个汉字序列切分成一个一个单独的词,就是将连续的字序列按照一定的规范重新组合成词序列的过程。现有的分词算法可分为三大类:基于字符串匹配的分词方法、基于理解的分词方法和基于统计的分词方法。按照是否与词性标注过程相结合,又可以分为单纯分词方法和分词与标注相结合的一体化方法。
去除停止词处理:指去除文段中对文段主要意思表达没有影响或影响不大的部分词语,这些词语可能在文段中出现频率很高,却对文段表达的意思没有任何影响,如“的”、“地”、“得”之类的助词,“啊”、“哈”、“呀”之类的感叹词,以及“从而”、“以”、“却”之类的副词或介词等。
具体而言,通过语音识别单元识别当前病历的语音主诉信息,并将所述语音主诉信息转化为文本信息;或者,直接通过文字录入模块获取当前病历的输入文本信息,所述文本信息即作为当前病历主诉信息,并将所述当前病历主诉信息作为后续计算步骤的输入。
patient=[(0,rel0),(1,rel1),…,(m-2,relm-2),(m-1,relm-1),];
emrn=[(0,rel'0),(1,rel'1),...,(m-2,rel′m-2),(m-1,rel′m-1)];
其中可选的,所述lsi主题的获取处理过程参考图2,为本发明实施例一种获取lsi主题的处理过程流程图,包括:
s11,对所述标准病历主诉进行分词处理和去除停止词处理,获取若干单词。
具体而言,在应用lsi模型计算之前,需建立lsi模型,并用标准病历主诉信息对lsi模型进行训练,在获取lsi模型的过程中设置lsi主题。即对于标准病历库中的任一标准病历,首先获取其对应的标准病历主诉文本信息,并对所述文本信息进行如上述实施例所述的分词处理和去除停止词处理,获得该标准病历主诉文本信息的若干单词。
s12,根据各所述单词在所述标准病历主诉中出现的频次,对所述单词进行分类运算,获取若干所述lsi主题。
具体而言,在上述步骤获取任一标准病历主诉的单词之后,通过计算所述单词在该标准病历主诉中的出现频次,计算各单词的tf-idf值,并据此实现对该标准病历中所有单词的分类,根据分类信息设置m个主题。
其中可选的,所述根据各所述单词在所述标准病历主诉中出现的频次,对所述单词进行分类运算,获取若干所述lsi主题的处理过程参考图3,为本发明实施例一种根据单词频次获取lsi主题的处理过程流程图,包括:
s121,按所述单词在医学词典中的序号对所述单词进行标号并计算所述单词在所述标准病历主诉中出现的频次。
对于已经建立的医学词典,对任一标准病历主诉文本信息,将其进行分词、去除停止词处理,获得该主诉文本信息的单词组。将单词组中每个单词按其在医学词典中出现的位置序号进行标号并计算其在该主诉中出现的频次numn。
s122,以所述标号和所述频次对为元素构建标准病历主诉文档向量。
具体而言,对于上述步骤已经获取的任一标准病历主诉单词的序号和其在该标准病历主诉中出现的频次,将该主诉表示为用id作为主键的文档向量[id,[(num0,id0),(num1,id1),…,(numn,idn),…,(numn,idn)]]。其中,idn为该主诉拆成的单词组在医学词典中的序号。
s123,计算所述标准病历主诉文档向量中各元素对应的所述单词的tf-idf值,获取tf-idf向量,并由所述tf-idf向量训练获取lsi模型,设置所述lsi主题。
具体而言,基于上述步骤的文档向量,计算每个单词的tf-idf值tfidfn,根据这些tf-idf值,生成新的tfidf向量[id,[(num0,tfidf1),(num1,tfidf2),…,(numn,tfidfn),…,(numn,tfidfn)]]。根据tfidf向量,设置m个主题。这时,每个文档都表示为用tf-idf值表示的向量,用这些向量训练出lsi模型。
步骤s3中,相似度计算可以采用余弦相似度计算方法或者皮尔逊相似度计算方法等,以下均以余弦相似度计算进行说明。余弦相似度计算表示通过计算两个向量的夹角余弦值来评估他们的相似度。通常余弦相似度的计算过程为:将两个向量根据坐标值,绘制到向量空间中,如最常见的二维空间;求得他们的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。两向量的夹角越小,夹角余弦值越接近于1,两个向量的方向就更吻合,说明两个向量越相似。
对于步骤s4,具体而言,对应标准病历库中的每一类标准病历,都存在一个标准问题库,该标准问题库中的标准问题均按序排列,形成有序标准问题,该有序标准问题为对应标准病例中患者病史的问题。对于上述步骤计算获取的当前病历主诉与标准病历主诉的相似度,根据该相似度值的高低选择与当前病历主诉相似度高的标准病历,即高相似度标准病历。该高相似度标准病历对应的问题库中存在若干标准问题,在选取高相似度标准病历之后,访问其对应的标准问题库,按其中的标准问题与当前病历反馈进行比对。
本发明实施例提供的一种融合临床思维的智能辅助问诊方法,根据当前病历主诉与标准病例主诉进行计算、比对,确定目标标准病历,该目标标准病历能够有效用于对当前病历的初步确定及智能导诊,从而大大减缓医院人员不足的压力,降低医院人员的工作强度,提升患者就医体验。
具体而言,根据上述实施例,在通过余弦相似度计算方法算得当前病历主诉与各标准病历主诉相似度之后,按各相似度值的高低,将对应相似度值从高到低的顺序对对应的标准病历进行排序,即,将与当前病历主诉相似度高的标准病历主诉对应的标准病历排在前面,将与当前病历主诉相似度低的标准病历主诉对应的标准病历排在后面。
然后,由排序第一的标准病历开始,逐次向后,按各标准病历问题库中的问题逐个比对标准病历回答与当前病历反馈。即先按排序第一的标准病历的问题的回答与当前病历的反馈进行比对,再按排序第二的标准病历的问题的回答与当前病历的反馈进行比对,再按排序第三的标准病历的问题的回答与当前病历的反馈进行比对,以此类推,直至所述当前病历对某个标准病历的有序标准问题的反馈都满足设置条件,则输出目标标准病历为该标准病历。
其中可选的,所述基于所述标准病例的反馈信息是指获取的病患回答信息、当前病历反馈的回答信息或者历史病历反馈的回答信息。
具体而言,所述基于所述标准病例的反馈信息可以是病患回答信息、当前病历反馈的回答信息或者历史病历反馈的回答信息中的一种或者多种组合。
对于全部标准病历,存在一个标准病历数据库,在一个实施例中,所述标准病历数据库的结构参考图4,为本发明实施例一种标准病历数据库结构示意图,包括:标准病历主诉库301、有序标准问题库302和所述有序标准问题库对应的标准回答库303。
其中可选的,所述当前病历的反馈进一步包括当前病历的回答库或者当前病历的现场回答。在对每个标准病历的有序标准问题由前至后进行选取之后,所述方法还包括:判断选取的问题是否存在于所述当前病历的问答库中,若所述选取的问题存在于所述当前病历的问答库中,从所述当前病历的问答库中获取所述当前病历针对该问题的回答;若所述选取的问题不存在于所述当前病历的问答库中,采集所述当前病历的现场回答,并将所述现场回答存入所述当前病历的问答库。
具体而言,上述获取当前病历对问题的回答可以通过实时采集当前病历的现场回答,若该当前病历的以往病历中有对该问题的回答,也可以由该当前病历以往病历数据的问答库中对该当前病历对该问题的回答进行提取。
本实施例中在选取标准病历的问题之后,首先搜索该当前病历的以往病历数据,判断是否对该当前病历就本问题进行过提问,并判断该当前病历是否对该问题进行了回答,即判断当前病历以为病历数据中是否存在对该问题的回答数据。若经过搜索判断获知该当前病历的以往病历数据中存在该当前病历对该问题的回答,则直接从该当前病历数据中读取该回答数据。
另一方面,如果该当前病历以往病历数据显示未曾对该当前病历提出过该问题,或者向该当前病历提过该问题,但没有该当前病历对该问题的回答,即当前病历数据中不存在对该问题的回答数据,则向当前病历按该问题进行提问,并提示当前病历现场回答。在当前病历对该问题进行现场回答,并由系统采集当前病历的现场回答数据之后,系统将当前病历的现场回答数据存入该当前病历的问答库。
本发明实施例提供的一种融合临床思维的智能辅助问诊方法,通过运用足够数量的经过专家验证的符合标准临床思维路径的病历,保证临床思维路径的严格标准性,同时采用模糊匹配,逐步找到与当前病历最接近的标准病历,确定目标标准病历。
为了更清楚的说明,以当前病历的现场回答为例,对根据上述实施例的完整处理流程说明如下:
对任一主诉文本信息将其进行分词和去除停止词处理,获得该主诉文本信息的单词组,将每个单词进行标号并计算其在该主诉中的频次numn,将该主诉表示为用id作为主键的文档向量[id,[(num0,id0),(num1,id1),…,(numn,idn),…,(numn,idn)]],idn为主诉拆成的单词组在医学词典中的序号。
基于这些文档向量,计算每个单词单词的tf-idf值tfidfn,生成新的tfidf向量[id,[(num0,tfidf1),(num1,tfidf2),…,(numn,tfidfn),…,(numn,tfidfn)]],设置m个主题,这时,每个文档都表示为用tf-idf值表示的向量,用这些向量训练出lsi模型。
emrn=[(0,rel′0),(1,rel1′),...,(m-2,rel′m-2),(m-1,rel′m-1)];
步骤四,利用向量组patient和emrn对当前病历主诉与标准病历主诉进行余弦相似度计算,并依据相似度计算结果对标准病历进行智能化排序。
步骤五,选取数据库中与当前病历主诉相似度最高的标准病历,选取该标准病历的第一个问题对当前病历进行提问。
步骤六,判断该问题是否存在于当前病历的问答库,若存在,提取库中的当前病历回答,转到步骤七;若不存在,当前病历针对这个问题通过语音或者文本的方式给出相应的回答,将相应的问题与当前病历回答保存到当前病历问答库,转到步骤七。
步骤八,若提问问题为标准病历的最后一个问题,则确定该标准病历为目标标准病历。
另外,对应标准病历中的每一类病历,都存在一个标准问题库,该问题库中的问题是按序排列的。对于相似度计算模块3计算获取的当前病历主诉与标准病历主诉的相似度,病历确定模块4根据该相似度值的高低选择与当前病历主诉相似度按高低排序在前的标准病历,即高相似度标准病历。该高相似度标准病历对应的问题库中存在若干标准问题,在选取高相似度标准病历之后,病历确定模块4访问其对应的问题库,按其中的标准问题的回答与当前病历针对该问题的反馈进行比对。
本发明实施例提供的一种融合临床思维的智能辅助问诊系统,产生的有益效果与上述方法类实施例相同,可以参考上述方法类实施例,此处不再赘述。
进一步的,所述系统还包括临床思维训练管理模块,用于连接数据库,并对所述数据库中的标准病历数据和当前病历数据进行访问和管理。
具体而言,所述临床思维训练管理模块与数据库连接,可以实现对数据库中病历数据,包括标准病历数据和所有当前病历数据。病历数据包括主诉数据、标准病历有序问题数据、标准病历问题回答数据及当前病历反馈数据。标准病历数据中的病历类型与各病历类型对应问题都有排序。
问诊系统可以通过临床思维训练管理模块对数据库中的数据进行访问,并对数据库中的用户数据等进行管理与维护。
本发明实施例提供的一种融合临床思维的智能辅助问诊系统,通过设置临床思维训练管理模块,实现对数据库的访问、管理和维护,保证系统诊断的可靠性和诊断系统的使用寿命。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。